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We congratulate the authors for their contribution to the field of Bayesian factor analy-
sis, which develops an appealing methodology for sparse recovery. We believe that their
approach may become a useful tool in applications for statisticians and practitioners,
thanks to its ability to simultaneously perform inference on identifiable sparse factor
loadings and achieve data-driven model selection in terms of the number of factors.
This works also stimulates a wealth of interesting follow up questions, both on the
specifics of the model at hand and also drawing from the broader contemporary Bayesian
literature. In this discussion we expand upon some of these questions, with specific ref-
erence to multiple testing, dependence among slab probabilities, continuous alternatives
to spike-and-slab priors, and the learning of the number of factors.

Multiplicity and multiple testing. The sparse Bayesian factor model with UGLT struc-
tures estimates all parameters simultaneously. Nonetheless, the estimation process can
be viewed as addressing two inferential challenges: first, a multiple testing problem,
where each entry of the factor loading matrix is tested to determine whether it is active
or not; and second, the estimation of the values of the active entries. In the context of
multiple testing, the Bayesian framework naturally accommodates two desirable yet dis-
tinct types of penalties. The first is an Ockham’s razor penalty, typically arising from the
use of marginal likelihoods, which penalizes models with more active loadings in factor
analysis, thus promoting sparsity. The second is a multiplicity penalty, thanks to which
the posterior inclusion probabilities for each factor loading decrease as the dimensions
m or H increase, leading to a framework of adaptive sparsity. Multiplicity penalties re-
late to the frequentist challenge of multiple testing and generally provide better control
of noisy signals and false discoveries by adopting a more cautious approach (Scott and
Berger, 2010). It would be valuable to assess the presence and potential influence of the
multiplicity penalty in the Bayesian model with UGLT stuctures. Specifically, while the
prior on τj seems to induce a multiplicity penalty in H (i.e., the number of columns), it
would be worth exploring whether a similar penalty also applies to m (i.e., the number
of rows) and whether such penalties are preserved after the post-processing procedure.
Additionally, it would be interesting to investigate how these penalties affect the model’s
recovery performance, for instance, by examining changes in the ROC curve.
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Individual components in the slab probability. The prior for the factor loadings
(βi,j)i,j in (3.1) requires a multivariate spike and slab prior. The dependence between
the marginals βi,j is induced by column-specific slab probabilities τj and a multivariate
hierarchical slab distribution with row-specific dependence, which shrinks each com-
ponent towards zero. However, to achieve additional shrinkage for individual factor
loadings, in (3.12) the authors propose to add an individual shrinking factor in the
multivariate hierarchical slab distribution. Could a similar result be achieved by allow-
ing for individual components in the slab probabilities? This would bring to the need
for multivariate versions of the exchangeable or cumulative shrinkage process, which
could possibly converge to a multivariate version of the Indian buffet process, e.g., the
hierarchical Indian buffet process (Thibaux and Jordan, 2007; James et al., 2024).

A role for other Bayesian approaches to sparsity and model selection in Bayesian
factor analysis? Implementing posterior-based inference with spike-and-slab priors is
a notoriously challenging task, due to the underlying combinatorial problem of explor-
ing the space containing all possible sparsity patterns. One of the key contributions
of the present paper is the construction of an ad-hoc MCMC sampler (cf. Algorithm
1), which cleverly alternates between the two formulations, Exploratory and Confirma-
tory, of the Factor Analysis model. On the other hand, the construction of Bayesian
models for sparse structures and variable selection is an issue of general interest in the
broader Bayesian literature, where some continuous (and easier to work with) alterna-
tives to the spike-and-slab prior have been shown, either theoretically or empirically,
to be potential effective approaches. For example, Laplace priors are known to pos-
sess desirable sparsity-promoting properties at the level of the maximum-a-posterior
estimators (Agapiou et al., 2018) and here could be deployed either directly onto the
factor loadings βij , or column-wise for the matrix βH . Excitingly, hierarchical Gaussian
priors have recently been shown to possess variable selection properties when endowed
with a horseshoe hyper-prior on the length-scale without the need for the additional
spike-and-slab structure (Castillo and Randrianarisoa, 2024). Some further possibili-
ties include the horseshoe priors themselves (and extensions thereof), Dirichlet–Laplace
and the so-called R2-D2 priors, see Hirsh et al. (2022). These developments suggest the
questions as to whether such sparse (or approximately sparse) continuous priors models
could also be employed with success in Bayesian factor analysis.

Learning the number of factors. Learning the number of factors simultaneously with
estimating the factors is a challenging problem, which the authors address effectively
in their proposal. Specifically, by imposing a UCLT structure, they facilitate the joint
identification of the unknown number of factors r and the underlying factor model
parameters Λ and Σ0 from the overfitting BFA model. Inference on the number of factors
is validated through a simulation study, where the authors empirically demonstrate the
model’s ability to recover the true number of factors, rtrue. These findings give hope that
the model can consistently estimate the true number of factors under a well-specified
data-generating process. Establishing such consistency for the discrete parameter rtrue
under an identifiable and well-specified model might be achievable by leveraging Doob’s
Theorem (Doob, 1949). In particular, demonstrating consistency for the true number
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of factors rtrue(< H) in a subset of the possible values of r of prior probability one
would imply consistency across all possible values of r, given that the prior distribution
assigns positive probability to each possible value. This strategy has been successfully
employed, for instance, in proving the consistency of the number of mixture components
in Bayesian finite mixture models with a prior on the number of components (Nobile,
1994; Miller, 2023).
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