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Introduction to Network Data



Network Data

• Network data describe the connections (edges/links) among a set of entities (nodes
/ vertices), showing who or what is connected to whom or what.
• Because those connections create interdependencies and define a specific structure

(different than most datasets), we need specialized statistical techniques to make
sense of the patterns and analyze networks.
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Example 1:
Wiretapping Network of Drug Dealing in Colombia1

1Kaustav Basu, Arunabha Sen, Identifying individuals associated with organized criminal networks: A social network analysis, Social Networks,
Volume 64, 2021, Pages 42-54,
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Example 2: DTI Networks 2

2J. Cabral , M. L. Kringelbach , G. Deco, Functional Graph Alterations in Schizophrenia: A Result from a Global Anatomic Decoupling?
Pharmacopsychiatry 2012; 45(S 01): S57-S64
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Example 3: X Network of Italian Members of Parliament
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Examples of Network Data

• Social networks: individuals connected by “friendship" or interactions (e.g., likes,
DMs).
• Information networks: webpages linked by hyperlinks; citation networks
• Physical networks: transportation and infrastructure networks
• Biological/medical networks: protein–protein interaction; neural connectomes
• Organizational networks: co-authorship; trade partnerships
• A good resource with many network data:

https://networkrepository.com/index.php
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Examples of Research Questions Related to Network
Data

• Influence & centrality: Who are the most central/influential actors?
• Community detection: How to uncover cohesive subgroups? How to detect groups

of subjects that behave similarly within the network?
• Structure–outcome relations: How are the network connections influenced by a set

of available covariates?
• Evolution of ties: Do links form by preferential attachment or homophily?
• Robustness & intervention: What happens if key nodes are removed?
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A Formal Representation of a Network

In order to analyze network data, we need first a way to represent them formally!
Network data are represented by graphs.

A graph G is an ordered pair G = (V, E) where:
• V is a set of n vertices (nodes).
• E ⊂ {{u, v} : u, v ∈ V, u ̸= v} is a set of unordered, distinct pairs.

Notation: |V | = n, |E| = m, di = deg(i) = #{j : {i, j} ∈ E}.

A B

C V = {A, B, C} |V | = n = 3

E = {{A, B}, {B, C}} |E| = m = 2

dA = 1 , dB = 2 , dC = 1
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Undirected vs Directed networks

Undirected Edges are unordered pairs {u, v}; mutual relation (e.g., friendship).
Directed Edges are ordered pairs (u, v); asymmetric relation (e.g., Twitter follow).

A B

C

Figure: Undirected network

A B

C

Figure: Directed network

In directed graphs, degin(i) ̸= degout(i).
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Simple vs Multi graphs

• Simple graph: at most one edge per node-pair, no loops.
• Multigraph: allows parallel edges and self-loops.

A B

Figure: Multigraph example
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Networks with Attributes

• Node attributes: categories, covariates (e.g., gender, age).
• Edge weights: tie strength (e.g., number of emails).
• Signed networks: positive/negative ties (e.g., like vs dislike on YouTube).

A B

C D

Figure: Attributed network example, colors
represent node attributes (node-colored network),
thickness of the edges represents edge weights

A B

C D

1

2 0.5

3

Figure: Attributed network example, colors
represent node attributes (node-colored network),
numbers on the edges represents edge weights
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And actually... many others3

3Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J. P., Moreno, Y., & Porter, M. A. (2014). Multilayer networks. Journal of complex networks,
2(3), 203-271.
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How to Encode Network Data



Adjacency List

• For each node, list neighbors (feasible for sparse or small graphs).
• Example (triangle A–B–C):

A : [B, C], B : [A, C], C : [A, B]

A B

C

R / igraph:

library(igraph)
edges <- data.frame(from=c("A","A","B"), to=c("B", "C", "C"))
g <- graph_from_data_frame(edges,dir=FALSE)
adj_list <- adjacent_vertices(g, V(g))
print(adj)list)
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Edge List

• Two-column table of edges.
• Example (triangle A–B–C):

A B

A C

B C
A B

C

R / igraph:

as_edgelist(g)
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Adjacency Matrix
• n× n matrix A with Aij = 1 if edge exists, else 0.
• Symmetric for undirected; memory O(n2).

A =

0 1 1
1 0 1
1 1 0



A real data example: Infinito network a

aCalderoni, F., & Piccardi, C. (2014). Uncovering the structure of criminal
organizations by community analysis: The infinito network. In 2014 tenth international
conference on signal-image technology and Internet-based systems (pp. 301-308). IEEE.

R / igraph:

as_adjacency_matrix(g)
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Summing Up: Encoding

A B

C

Adjacency Matrix

A =

0 1 1
1 0 1
1 1 0


Edge List

A B
A C
B C

Adjacency List

A: [B, C]
B: [A, C]
C: [A, B]
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Descriptive Analysis of Networks



Density of a Network

Density

Density = m(n
2
) = 2 m

n(n− 1)
(
0 ≤ Density ≤ 1

)
where m = num. of edges and n = num. of nodes

• What it measures: Fraction of realized edges out of all possible
(n

2
)
.

Density ≈ 0 =⇒ very sparse; Density ≈ 1 =⇒ almost complete.
• Special cases:

• Complete graph Kn: m = n(n−1)
2 =⇒ Density = 1.

• Tree on n nodes: m = n− 1 =⇒ Density = 2
n , which vanishes as n grows.

• Why use it:
• Compare overall connectivity across networks of different sizes.
• Quick sanity check (e.g. is my statistical model generating graphs that are too sparse?).

In R / igraph: edge_density(g)
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Vertex Degree

Undirected network. The degree of node i, denoted

di =
∑

j

Aij ,

is the number of edges incident on i, where the adjacency matrix entry

Aij =
{

1, if there is an (undirected) edge between i and j,

0, otherwise.

Directed network.
din

i =
∑

j

Aji, dout
i =

∑
j

Aij .

Incoming degree counts arrows into i; outgoing degree counts arrows out.
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Vertex Degree Distribution

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

Degree distribution.

Let n be the number of nodes. Then

P (k) = #{ i : di = k}
n

is the fraction of nodes of degree k.

In our example (d1, d2, d3, d4) = (3, 2, 3, 2),
so

P (2) = 2
4 = 0.5, P (3) = 2

4 = 0.5.

R / igraph: degree(g)

B. Franzolini Network data analysis June 8, 2025 - SICSS-Lake Como 23/57



Vertex Centrality
Many network-analysis questions boil down to:
• Which nodes are most important in the network?

Research questions examples:
• “What airports are key bottlenecks in transportation?”
• “Who should we vaccinate first to stop an epidemic most efficiently?”
• “Which employee’s departure would fragment the organization most?”
• “Which web pages serve as gateways to the broader Internet?”
• “Which user in a social media network has the greatest influence potential?”

Centrality measures answer these questions = quantify different notions of “importance”.

Degree centrality (i.e., node degree)

CD(i) = di,
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Limitations of Degree Centrality
Two nodes with the same degree but very different roles

L1 L2

A

R1 R2

C

B

• Degree centrality: dA = 2 and dB = 2.
• Node A: lies entirely within one cluster –

its removal does not disconnect the net-
work.
• Node B: is the only bridge between two

clusters – its removal splits the network
into two disconnected parts.
• Takeaway: Node degree is just local pop-

ularity. Nodes with equal degree can play
very different global roles. Degree central-
ity alone can miss critical structural impor-
tance.

We need different measures of centrality!
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Shortest Path
Path and Shortest Path
In an unweighted graph G = (V, E), a path from node u to node v is a sequence
of distinct vertices

u = x0, x1, . . . , xk = v with (xi−1, xi) ∈ E for i = 1, . . . , k.

The length of such a path is simply the number of edges, k.
A shortest path between u and v is one having the minimum possible k.

Notation: d(u, v) = min{ k : ∃ a path of length k from u to v}.

A B C

D

Here, d(A, C) = 2, since the minimum number of hops from A to C is two (via B).
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Vertex Centrality: Definitions

Betweenness centrality

CB(i) =
∑

s ̸=t̸=i

σst(i)
σst

,

where σst is the number of shortest paths s→ t, and σst(i) counts those that pass
through i. Measures how much i “bridges” pairs of nodes.

Closeness centrality

CC(i) = 1∑
j d(i, j) ,

with d(i, j) the shortest-path distance. Quantifies how quickly i can reach all others.

In R: betweenness(g), closeness(g)
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Vertex Centrality: Toy Network Example

A

B

C

D

E
F

• Degree centrality:

CD(A) = 3, CD(B) = 2, CD(C) = 5, CD(D) = 1, CD(E) = 1, CD(F ) = 2.

• Betweenness centrality:

CB(A) = 1, CB(B) = 0, CB(C) = 8, CB(D) = 0, CB(E) = 0, CB(F ) = 0.

• Closeness centrality:

CC(A) = 1
7 ≈ 0.143, CC(B) = CC(F ) = 1

8 = 0.125,

CC(C) = 1
5 = 0.200, CC(D) = CC(E) = 1

9 ≈ 0.111 .
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Vertex Centrality: Toy Network Example

A

B

C

D

E
F
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Transitivity in Networks
What is transitivity?
• Intuitively: “a friend of a friend is likely also my friend.”
• More formally: if edges A−B and B−C exist, how often do we also see A−C?
• Captures the tendency toward closure and local cohesion in real-world networks.
• High transitivity =⇒ strong community structure.

Basic patterns to measure transitivity:
A

B C

Open triad
(two-path without closure)

A

B C

Closed triad = Triangle
(fully connected triple)

There are three distinct triads in a triangle!
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Local & Average Clustering Coefficients
Local and Average clustering coefficients
• Local clustering coefficient:

C(v) = num. of couples of “friends" of v that are “friends"
num. of couples of “friends" of v

=


#{triangles containing v}(deg(v)

2
) , deg(v) ≥ 2,

0, otherwise.
• Average clustering coefficient: C̄ = 1

n

∑
v∈V C(v).

Example:

1

2

34

5
C(1) =?, C(2) =?, C(3) =?,

C(4) =?, C(5) =?,

C̄ =?.
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Local & Average Clustering Coefficients
Local and Average clustering coefficients
• Local clustering coefficient:

C(v) = num. of couples of “friends" of v that are “friends"
num. of couples of “friends" of v

=


#{triangles containing v}(deg(v)

2
) , deg(v) ≥ 2,

0, otherwise.
• Average clustering coefficient: C̄ = 1

n

∑
v∈V C(v).

Example:

1

2

34

5
C(1) = 1, C(2) = 1, C(3) = 1

3 ,

C(4) = 0, C(5) = 0,

C̄ =
1 + 1 + 1

3 + 0 + 0
5 ≈ 0.467.
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Global Clustering Coefficient

Global clustering coefficient

Cglobal = 3× num. of triangles
num. of triads

Example:

1

2

34

5
number of triangles = ?
number of triads = ?
Cglobal =?
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Global Clustering Coefficient

Global clustering coefficient

Cglobal = 3× num. of triangles
num. of triads

Example:

1

2

34

5
number of triangles = 1
number of triads = 5
Cglobal = 3/5 = 0.6
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Local vs Global Transitivity

1 2

3
45

6

7

8
9 10

11

Clocal(1) = #{triangles at 1}(10
2
) = 5

45 = 1
9 ≈ 0.111

Clocal(i) = 1(2
2
) = 1, i = 2, . . . , 11

C̄ = 1
11

11∑
v=1

Clocal(v) =
1
9 + 10 · 1

11 = 91
99 ≈ 0.919

Cglobal = 3× (#triangles = 5)∑
v

(dv

2
) = 15

55 = 3
11 ≈ 0.273

B. Franzolini Network data analysis June 8, 2025 - SICSS-Lake Como 35/57



Summing Up: Descriptive Statistics

• General measures structure and size
Density: how much connected is the network. (in [0,1]) edge_density(g)

Degree dist: how many nodes with x connections. table(degree(g))

• Measures of centrality
Degree: how many connections with node v degree(g)

Betweenness: how often v connects others betweenness(g)
Closeness: how close if v to others closeness(g)

• Measures of transitivity
Average clustering: local transitivity transitivity(g, type="local")
Global clustering: global transitivity transitivity(g, type="global")
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Simple Probabilistic Models



Probabilistic Generative Network Models
Given the observed set of nodes V , we can probabilistically model the network by assuming
some distribution generating the links between them, i.e., define the distribution of the
adjacency matrix A:

pr(A | θ)

Then:
• Estimate θ from the observed network.
• Predict links for new nodes.

θ
Probabilistic model

Generated network

Parameter(s)
pr(A | θ)

B. Franzolini Network data analysis June 8, 2025 - SICSS-Lake Como 38/57



Erdős–Rényi Random Graph4

Each pair of the n vertices is connected with probability p independently.

Au,v | p
iid∼ Bernoulli(p) ∀u < v

• E[m] =
(n

2
)
p

• di ∼ Bin(n− 1, p).

4Erdős & Rényi (1959). "On Random Graphs. I" Publicationes Mathematicae. 6 (3–4): 290–297.
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Preferential Attachment Models5

i. There is a fixed initial network Gm0 with 2 ≤ m0 << m nodes
ii. A new node v enters the network and creates m0 links with the existing nodes sampling

them according to
pr(Av,u = 1) ∝

u
f(θ, du)

with f increasing function in du depending on the parameter θ.
iii. Step ii. is repeated until all n nodes are in the network.

5Barabási & Albert (1999). "Emergence of scaling in random networks". Science. 286 (5439): 509–512.B. Franzolini Network data analysis June 8, 2025 - SICSS-Lake Como 40/57



Stochastic Block Models



Stochastic Block Model (SBM)6 Overview
• A generative model for networks: n nodes are partitioned into K latent blocks.
• Each node i is assigned to a community zi ∈ {1, . . . , K} (unknown labels).
• Edge probabilities depend only on the communities:

pr(Aij = 1 | zi = k, zj = ℓ) = θkℓ, ∀i > j.

1
23

4
5 6

7
8

9 10

11

12
13

1415

16

6Holland, P. W., Laskey, K. B., & Leinhardt, S. (1983). Stochastic blockmodels: First steps. Social Networks, 5(2), 109–137.
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Blocks vs. Communities

Blocks in SBM
Nodes share the same connectivity patterns, i.e.,
they behave similarly, but they are not necessarily
connected among themselves.
i, j in same block means

pr(Ai· | zi = k) ≈ pr(Aj· | zj = k).

a
b
c

x1

x2

x3

Community
Usually refers to a subset of nodes
that form a densely connected
subgraph:

1

2

34

5

• Block: A set of nodes with equivalent linking profiles to all blocks.
• Community: A cluster with high internal density of edges.
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Assortativity in Stochastic Block Models

Assortative SBM
Dense intra-block connectivity, few
inter-block links.

1
23

4
5 6

7
8
9 10

11

12
13

1415
16

Non-assortative SBM
Sparse intra-block connectivity, relatively
more inter-block links.

1
23

4
5 6

7
8
9 10

11

12
13

1415
16

• Assortative: High probability of edges within blocks (θkk ≫ θkℓ), reflecting strong
community structure.
• Non-assortative: Low within-block edge probability (θkk ≤ θkℓ), showing disassor-

tative or core–periphery patterns.
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Inference in SBMs

• Two sets of unknowns:
• Block assignments z = (z1, . . . , zn), discrete labels zi ∈ {1, . . . , K}.
• Connection probabilities Θ = (θkℓ)k≤ℓ≤K , continuous parameters.

• Frequentist MLE: (ẑ, Θ̂) = arg maxz,Θ
∑

i<j

[
Aij log θzi,zj +(1−Aij) log(1−θzi,zj )

]
.

• Degenerate MLE if K free:
Allowing arbitrary K gives the trivial solution: K = n, zi = i, θ̂ij = Aij ,
i.e. each node in its own block, perfectly fitting every edge.

1 2 3 4

Take-away: To avoid this, one must
• Fit SBMs for different fixed K and compare fitting via information criteria,
• Use a Bayesian nonparametric approach / impose complexity penalties.
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Frequentist SBM: Estimation

ML objective: (ẑ, Θ̂) = arg max
z,Θ

∑
i<j

[
Aij log θzi,zj + (1−Aij) log(1− θzi,zj )

]
E–step: γik ∝ πk

∏
j ̸=i

θ
Aij

k,zj
(1− θk,zj

)1−Aij

M–step: πk ← 1
n

∑
i

γik, θkℓ ←
∑

i<j
γikγjℓAij∑

i<j
γikγjℓ

ML and EM require fixing K.

Integration classification likelihood criterion:

ICL(K) = −2 ℓ(ẑ, Θ̂) +
[1

2K(K + 1)
]
log
((n

2

))
ICL(K) often has a clear minimum but must be computed for each K.
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The Bayesian Paradigm (Informal)

• What is Bayesian inference?
A way to learn about unknown quantities by updating knowledge with observed data.
• Bayes’ Rule: pr(θ | data)︸ ︷︷ ︸

posterior

∝ pr(data | θ)︸ ︷︷ ︸
likelihood

× pr(θ)︸ ︷︷ ︸
prior

.

• Prior p(θ): what you believe about θ before seeing the data.
• Likelihood p(data | θ): how probable the observed data are, given θ.
• Posterior p(θ | data): your updated belief after seeing the data.

• Key ideas / Why use it?:
• Full probabilistic: posterior is a full distribution, not just a point estimate.
• Regularization: the prior can shrink or penalize extreme estimates (avoids overfitting).
• Modularity: easy to build hierarchical and complex models by stacking priors.
• Integration of sources: provides a coherent framework for combining data with existing

knowledge or info from different data sources.
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A Bayesian Nonparametric Approach to SBM

• Bayesian paradigm: Place priors on both block assignments and connection proba-
bilities, then infer the posterior

p(z, Θ | A) ∝ p(A | z, Θ) p(Θ) p(z).

This naturally penalizes over-complex partitions (avoiding K = n degeneracy).
• Nonparametric: Number of blocks K need not be fixed in advance – it can grow

with the data.
• Priors:

• Partition prior p(z): Chinese Restaurant Process (CRP) with concentration α.
• Edge-probability prior p(Θ): i.i.d. Beta(β, β) for each θkℓ.

• Key benefit: Let the data “decide” how many blocks are needed, trading off fit vs.
complexity.
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Infinite SBM Generative Model

zi ∼ CRP(α), i = 1, . . . , N,

θkℓ ∼ Beta(β, β), ∀k ≤ ℓ,

Aij | zi = k, zj = ℓ, Θ ∼ Bernoulli(θkℓ), Aji = Aij .

• α controls the tendency to create new blocks: small α favors fewer, larger clusters;
large α allows many small clusters.
• β encodes prior belief on connection sparsity; β = 1 gives a uniform prior on [0, 1].

B. Franzolini Network data analysis June 8, 2025 - SICSS-Lake Como 49/57



The Chinese Restaurant Process

• Seating metaphor: Customers (nodes) enter one by one into a restaurant with
infinitely many tables.
• Assignment rule for customer i:

pr(zi = k | z1, z2, . . . , zi−1) =


nk

i− 1 + α
, existing table k,

α

i− 1 + α
, new table,

where nk is the current size of table k.
• Properties:

• Expected number of tables ≈ α log N .
• Equivalent to a Dirichlet Process.
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CRP Step 1: Customer 1

P (z1 = 1) = 1

Table 1

1
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CRP Step 2: Customer 2

Table 1
(1)

Table 2
(0)

1

P (z2 = 1 | z1) = 1
1 + α

, P (z2 = new | z1) = α

1 + α

Table 1
(2)

Table 2
(0)

1 2
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CRP Step 3: Customer 3

Table 1
(2)

Table 2
(0)

1 2

P (z3 = 1 | z1:2) = 2
2 + α

, P (z3 = 2 | z1:2) = α

2 + α

Table 1
(2)

Table 2
(1)

1 2 3
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CRP Step 4: Customer 4

Table 1
(2)

Table 2
(1)

Table 3
(0)

1 2 3

P (z4 = 1 | z1:3) = 2
3 + α

, P (z4 = 2 | z1:3) = 1
3 + α

, P (z4 = new) = α

3 + α

Table 1
(3)

Table 2
(1)

1 2 34
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Bayesian Nonparametric SBM: Estimation

Gibbs sampler
1. Initialize assignments z(0) (e.g. randomly).
2. Iterate for t = 1, . . . , T :

• For each node i:
2.1 Remove i from its current block, updating counts n−i

k .
2.2 Compute for each existing block k:

pk ∝ n−i
k × Pr(Ai,· | zi = k, z−i),

and for a new block:
pnew ∝ α × Pr(Ai,· | new block).

2.3 Sample z
(t)
i from {pk, pnew}.

• (Optional) Sample θkℓ ∼ Beta(β + mkℓ, β + tkℓ −mkℓ).
3. Output: Posterior samples {z(t), Θ(t)}.
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Summing Up: SBMs

• Generative view:

Aij | zi = k, zj = ℓ, Θ ∼ Bernoulli(θkℓ).

• Parameters to infer:
• Block assignments {zi}n

i=1
• Connection matrix Θ = (θkℓ)K

k,ℓ=1
• Number of blocks K

• Inference strategies:
Frequentist EM / MLE with fixed K

ICL−−−→ select K

Bayesian Gibbs, place CRP prior on z, Beta prior on θkℓ

• Trade-offs:
• Fixed-K SBM: faster, needs external model selection
• CRP: automatic K discovery, quantifies uncertainty, higher computational cost
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The End
Thank you for listening!

Questions?
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