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Abstract. Bayesian mixtures are well-established models for density es-
timation and probabilistic clustering of cross-sectional data. In the last
decades, they have also been successfully extended to regression set-
tings. However, there is still currently no consensus on whether and how
Bayesian mixture models can handle the analysis of longitudinal data and
conduct classification in general frameworks. This work presents some re-
cent advances in longitudinal clustering and classification via Bayesian
mixture models, showing novel promising results for the applicability of
such models in these settings. The contents of these pages summarize
some of the results derived in [12] and [11].
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1 BMM for cross-sectional density estimation, clustering,
and regression

Bayesian mixture models (BMM) [10, 20, 18, 13, 5, 9, 24, 21, 7, 29] are a popular
and well-established tool for density estimation and clustering of cross-sectional
data. BMM assume the sequence of data (Xi)i≥1 being generated by

Xi
iid∼

∫
k(xi, θ)dP (θ)

a.s.
=

∞∑
h=1

whk(xi, θh) for i = 1, 2, . . . (1)

where k is a deterministic probability mass or density function, typically Gaus-
sian and referred to as kernel. The Bayesian approach comes into play once
a prior is established for the mixing measure P or, equivalently, for the se-
quences of weights (wh)h≥1 ∈ ∆∞ and atoms (θ)h≥1, with ∆∞ = {(wh)h≥1, :
wh ≥ 0 and

∑∞
h=1 wh = 1} denoting the infinite-dimensional probability sim-

plex. Note that (1) is general and does not require that the number of mixture
components be almost surely infinite. In particular, finite mixture models with
H < ∞ number of components can be recovered imposing that wh ∼ δ0 for any
h ≥ H, mixtures of finite mixtures [25, 24, 2] requiring (wh)h≥1 to be a.s. an
eventually-zero sequence, and infinite mixtures [10, 20] imposing pr(wh > 0) = 1,
∀h ≥ 1. When BMM are used for density estimation, they may achieve high flex-
ibility (usually provided by the full weak support of the mixing measure P ) while
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also guaranteeing good frequentist consistency properties for most popular ker-
nel and prior choices [see 14, 16, 19, 28, 15, 31, 32, 33]. When used for clustering,
some advantages of BMM compared to algorithmic techniques are that they are
based on explicit definitions of clusters via the kernel k, allow for an automatic
data-driven selection of the number of clusters, and provide posterior-based un-
certainty quantification. Differently than for density estimation, frequentist con-
sistency properties of the clustering arrangement are puzzling. This is due not
only to the posterior behavior of the number of clusters of most popular priors
[22, 23, 3, 1, 8] but also to an intrinsic identifiability issue of model-based clus-
tering problems anytime true clusters correspond to overlapping distributions.

Building upon models as in (1), in the last two decades several proposals
have emerged to extend BMM to data grouped into J distinct populations. In
this case, denoting via ((Xji)i≥1)

J
j=1 an infinite partially exchangeable sequence

of data, BMM takes the form

Xji
ind∼

∫
kj(xji, θ)dPj(θ)

a.s.
=

∞∑
h=1

wjhkj(xji, θh) for i = 1, 2, . . . (2)

for j = 1, . . . , J . No restrictions are imposed on the weights except that (wjh)h≥1 ∈
∆∞, and thus the complete sharing of atoms across populations is possibly just
apparent. Different priors can be used for (2) based on which type of dependence
and borrowing of information has to be considered across populations, allowing
for modeling either ordered or unordered populations, with or without sharing of
mixture components. Models of the type as in (2) appear to inherit frequentist
posterior consistency for density estimation under mild additional assumptions
[see, for instance, 26, 4, 6], while still guaranteeing flexibility, explicit definition
of clusters, automatic selection of the number of clusters, and uncertainty quan-
tification. However, contrary to BMM in (1) they accommodate different levels of
heterogeneity across observations, based on the population assignment j, while
allowing for borrowing across populations. Finally, both versions of BMM in (1)
and (2) can be extended to be nonparametric regression models for a dependent
variable Yi on a vector of covariates Zi (possibly continuous). This can be done
either by setting Xi = (Yi, Zi) or modeling weights and atoms in a mixture
model for Yi as functions of Zi [see, 27, 30, for recent reviews].

While the settings mentioned so far, i.e., cross-sectional clustering and re-
gression via BMM, are nowadays well-studied and mostly well-established, it is
not yet unanimous how and if the core construction of BMM can be extended
to effectively model longitudinal data and perform classification. The next two
sections present some answers and ideas for these two settings, respectively.

2 BBM for dynamic clustering

Recently, in [12], a general extension to dynamic clustering based on BMM has
been established, via the notion of conditional partial exchangeability (CPE)
and a Markovian assumption. Let Xt,i, be data observed at time-point t for the
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i−th item to be clustered and let i = 1, . . . , n. The goal of dynamic clustering is
to estimate a sequence of clustering configurations (ρt)

T
t=1, each corresponding

to a distinct time-point. The partition ρt, can be represented by the vector
ct = (ct1, . . . , ctn) of subject-specific allocation variables, whose elements take
value in the set [n] := {1, 2, . . . , n} and are such that cti = ctj if and only if
subjects i and j belong to the same cluster according to ρt.

Exchangeability of the multivariate observations (X1,i, . . . , XT,i) across i does
not imply conditional exchangeability at different time points, given the past. To
better understand this point, let’s see what happens if we do assume exchange-
ability of (Xt,i)i≥1 conditionally on ρt−1. This implies, for instance, that for any
set of three subjects i, j and k,

pr(Xt,i, Xt,j | ρt−1 = {{i, j}, {k}}) = pr(Xt,i, Xt,k | ρt−1 = {{i, j}, {k}}),

meaning that knowing that subjects i and j belong to the same cluster at time
t−1 does not provide any information specific to those same two subjects at time
t. This odd behavior of the learning mechanism under conditional exchangeability
is because such an assumption prevents subject-level information (such as which
subjects belong to the same cluster) from being carried from one time-point to
the next, and allows only population-level information (such as knowledge about
the number of clusters or the clusters’ frequencies) to be transferred across time.

To avoid this issue, [12] propose CPE, that in the context of longitudinal data
requires that for any σ ∈ P(n; ρt−1,n), where P(n; ρt−1,n) denotes the space of
permutations of n elements that preserve ρt−1,n, i.e, ct−1,σ(i) = ct−1,i, for any i,
the following two conditions hold

pr [(Xt,1, . . . , Xt,n) ∈ A | ρt−1,n] = pr
[
(Xt,σ(1), . . . , Xt,σ(n)) ∈ A | ρt−1,n

]
for any measurable set A, n ≥ 1, and

pr [(Xt,i1 , . . . , Xt,iℓ) | ct−1,i1 = . . . = ct−1,iℓ ] =

= pr [(Xt,j1 , . . . , Xt,jℓ) | ct−1,j1 = . . . = ct−1,jℓ ]

for any (i1, . . . , iℓ), (j1, . . . , jℓ) ⊂ [n], allowing to obtain

pr(Xt,i, Xt,j ∈ A2 | ρt−1 = {{i, j}, {k}}) ≥
≥ pr(Xt,i, Xt,k ∈ A2 | ρt−1 = {{i, j}, {k}}).

with a strict inequality on non-trivial sets A guaranteeing the preservation of
subjects’ identities across time. In [12], we show how models based on this as-
sumption overperformed models that disregard subjects’ identity in longitudinal
settings.

3 BBM for classification

Classification tasks involve the process of categorizing input data into predefined
classes or categories based on their features or attributes. In this setting, the
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primary objective is to build a predictive model that can accurately assign new
instances to the appropriate class labels. This task typically entails estimating a
model (training a classifier) using a train set, where each data point is associated
with a known category, and evaluating its performance on a test set. The most
popular models and techniques for classification are logistic regression, support
vector machines, random forests, näıve Bayes classifiers, and neural networks. All
have advantages and disadvantages based on the specific applied problem and
the amount of available data. Denoting with (Ci, Xi)

n
i=1 the train set, where

Xi = (Xi,1, . . . , Xi,p) is a vector of covariates, and Ci ∈ C = {C∗
1 , . . . , C

∗
K} is the

category, a näıve Bayes classifier associates to each new item with Xi = xi, for
i ≥ n+ 1, the category C(xi) such that

C(xi) = argmax
C∈C

pr(C|xi) = argmax
C∈C

pr(C)

p∏
j=1

pr(xij |C) (3)

Equation (3) is derived employing Bayes theorem and under the conditional
global independence assumption pr(xi|Ck) =

∏p
j=1 pr(xij |Ck) which, while re-

ducing the number of parameters to feasible levels even in large p settings, also
constitute the main limitation of näıve Bayes classifiers. Nonetheless, [11], in
a spirit close to that of [17], explore the use of BMM to estimate the condi-
tional multivariate distribution pr(xi|Ck) assuming local (but not global) inde-
pendence, meaning that the classification rule is obtained as

C(xi) = pr(xi|Ck) = argmax
C∈C

pr(C)

∞∑
h=1

wh

p∏
j=1

pr(xij |θh, Ck)

The table below shows the out-of-sample predictive accuracy of a local in-
dependent model based on BMM obtained via category-specific mixtures of
Dirichlet process mixtures of normal kernels, (multinomial) logistic regression
and random forests on the iris dataset available in R for different propor-
tion of train and test sets, code to replicate the results is available at https:

//github.com/beatricefranzolini/BMMclassifier.

Table 1. Out-of-sample accuracy on iris data-set

DPM Logistic Random Forest

iris: train 80%, test: 20% 100.00 % 100.00 % 100.00 %

iris: train 50%, test: 50% 96.00 % 93.33 % 94.66 %

iris: train 30%, test: 70% 97.14 % 96.19 % 94.28 %

iris: train 10%, test: 90% 96.29 % 95.55 % 94.81 %

Acknowledgements

This work is supported by the National Recovery and Resilience Plan of Italy
(PE1 FAIR - CUP B43C22000800006).

https://github.com/beatricefranzolini/BMMclassifier
https://github.com/beatricefranzolini/BMMclassifier


Bibliography

[1] Alamichel, L., Bystrova, D., Arbel, J., King, G.K.K.: Bayesian mix-
ture models (in) consistency for the number of clusters. arXiv preprint
arXiv:2210.14201 (2022)

[2] Argiento, R., De Iorio, M.: Is infinity that far? a Bayesian nonparametric
perspective of finite mixture models. The Annals of Statistics 50(5), 2641–
2663 (2022)

[3] Ascolani, F., Lijoi, A., Rebaudo, G., Zanella, G.: Clustering consistency
with Dirichlet process mixtures. Biometrika 110(2), 551–558 (2023)

[4] Barrientos, A.F., Jara, A., Quintana, F.A.: Fully nonparametric regression
for bounded data using dependent Bernstein polynomials. Journal of the
American Statistical Association 112(518), 806–825 (2017)

[5] Barrios, E., Lijoi, A., Nieto-Barajas, L.E., Prünster, I.: Modeling with nor-
malized random measure mixture models. Statistical Science 28(3), 313 –
334

[6] Catalano, M., De Blasi, P., Lijoi, A., Prünster, I.: Posterior asymptotics for
boosted hierarchical Dirichlet process mixtures. The Journal of Machine
Learning Research 23(1), 3471–3493 (2022)

[7] Catalano, M., Lijoi, A., Prünster, I., Rigon, T.: Bayesian modeling via dis-
crete nonparametric priors. Japanese Journal of Statistics and Data Science
pp. 1–18 (2023)

[8] Chandra, N.K., Canale, A., Dunson, D.B.: Escaping the curse of dimen-
sionality in Bayesian model-based clustering. Journal of Machine Learning
Research 24(144), 1–42 (2023)

[9] De Blasi, P., Favaro, S., Lijoi, A., Mena, R.H., Prünster, I., Ruggiero, M.:
Are Gibbs-type priors the most natural generalization of the Dirichlet pro-
cess? IEEE transactions on pattern analysis and machine intelligence 37(2),
212–229 (2013)

[10] Ferguson, T.S.: Bayesian density estimation by mixtures of normal distri-
butions. In: Recent advances in statistics, pp. 287–302. Elsevier (1983)
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