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Abstract

Standard clustering techniques assume a common configuration for all features in
a dataset. However, when dealing with multi-view or longitudinal data, the clusters’
number, frequencies, and shapes may need to vary across features to accurately cap-
ture dependence structures and heterogeneity. In this setting, classical model-based
clustering fails to account for within-subject dependence across domains. We introduce
conditional partial exchangeability, a novel probabilistic paradigm for dependent ran-
dom partitions of the same objects across distinct domains. Additionally, we study a
wide class of Bayesian clustering models based on conditional partial exchangeability,
which allows for flexible dependent clustering of individuals across features, captur-
ing the specific contribution of each feature and the within-subject dependence, while
ensuring computational feasibility.
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1 Clustering multi-view information

Clustering is arguably the most famous unsupervised learning technique. It involves group-
ing observations into clusters based on their similarities. Standard clustering techniques
assume a common clustering configuration of subjects across all features observed in a sam-
ple. However, given the complexity and dimension of modern datasets, a unique clustering
arrangement for all the features is often inadequate to describe the structure and the het-
erogeneity in the population under study. For instance, in longitudinal data analysis, the
underlying clustering structure of individuals is likely to change over time; in multi-view
data (see, for instance, Yang & Wang 2018) multivariate information collected across dis-
tinct domains may require clusters’ shapes and definitions to change from feature to feature.
In this setting, a unique clustering configuration based on all the observed features not only
may be hard to detect (often leading to clusters of small size to accommodate heterogeneity
in multi-dimensional spaces, cf., Chandra et al. 2023), but will also mainly capture global
patterns, down-weighting the idiosyncratic contribution of each feature. Moreover, it de-
pends on features’ dimensions, favoring higher dimensional features as more important in
explaining the heterogeneity across subjects. See Figure 1 for a toy example illustrating the
latter problem. In this work, we focus on clustering problems where multi-view or longitu-
dinal information is available for the same subjects, and we allow the underlying clustering
structure to change across features/time.
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(a) True clustering structure.
Each point corresponds to a
subject. Colors represent the
true cluster assignment.
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(b) k-means clustering configu-
ration with the number of clus-
ters determined by elbow plot,
gap statistics, and silhouette
method.
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(c) Dirichlet process mixture es-
timate of the clustering con-
figuration obtained minimizing
the variation of information loss
function.

Figure 1: Toy example. Data was simulated for two features and 200 subjects, with the true
clustering configuration displayed in panel (a). The first feature (x-axis) is sampled from
a univariate Normal with unitary variance and mean equal either to 1 or -1, depending on
the true cluster assignment. The second feature (y-axis) is sampled from a three-variate
Normal with identity covariance matrix and mean equal to either (1, 1, 1) or (−1,−1,−1)
depending on the true cluster assignment; it is represented via its first principal component
on the y-axis. The Dirichlet process estimate in panel c) is obtained with a Multivariate
Normal kernel with identity covariance matrix, standard Multivariate Normal base measure,
and concentration parameter equal to 0.1. Both the clustering configurations obtained with
k-means (panel b) and the Dirichlet process mixtures (panel c) are heavily informed by the
second feature and ignore the information contained in the first feature.

The two main approaches for clustering are model-based and algorithmic methods. Model-
based methods rely on distributional assumptions about the underlying data-generating
mechanism of the observations in each cluster, leading to a mixture model. Unlike algo-
rithmic techniques, model-based methods explicitly define the shape of a cluster in terms of
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probability distribution functions. Most popular model-based approaches include Bayesian
infinite mixture models (Ferguson 1983, Lo 1984, Barrios et al. 2013) and Bayesian mixtures
with a random number of components (Nobile 1994, De Blasi et al. 2015, Miller & Harrison
2018, Argiento & De Iorio 2022). They allow for data-driven automatic selection of the num-
ber of clusters for which no finite upper bound has to be fixed. Most traditional clustering
approaches (both model-based and algorithmic) are designed for single-view data and aim
at detecting a unique clustering configuration of individuals in a sample. In recent years, a
wealth of proposals for algorithms to integrate multi-view information has appeared in the
machine learning literature (see, Yang & Wang 2018, Chen et al. 2022, for comprehensive
reviews of the topic). Nonetheless, such methods, while recognizing the multi-view nature of
the data, provide again a single clustering configuration common to all the features, which
may still fail to highlight the complementary information of each feature (Yao et al. 2019).
An interesting exception is provided by the algorithm proposed by Yao et al. (2019). In
the Bayesian clustering literature, the focus is often placed on multi-sample data, rather
than multi-view data, in the sense that there is an initial natural grouping of the subjects
(for example, based on treatment groups in a clinical trial, or some level of a particular
covariate) which is treated as deterministic and there is no overlap of subjects across groups.
Then, clustering is performed within each group, with clusters possibly shared among groups.
These models are obtained by inducing dependence between the group-specific random prob-
ability measures in the underlying mixture model and they have been the object of extensive
research in recent decades (see, MacEachern 2000, Müller et al. 2004, Teh et al. 2006, Caron
et al. 2007, Dunson & Park 2008, Ren et al. 2008, Dunson 2010, Rodŕıguez et al. 2010,
Taddy 2010, Rodriguez & Dunson 2011, Lijoi et al. 2014, Foti & Williamson 2015, Caron
et al. 2017, Griffin & Leisen 2017, DeYoreo & Kottas 2018, Argiento et al. 2020, Bassetti
et al. 2020, Ascolani et al. 2021, Beraha et al. 2021, Denti et al. 2021, Zhou et al. 2021,
Quintana et al. 2022, Lijoi et al. 2023). Models built with this strategy may be effectively
employed for clustering multi-sample data, i.e., when different clustering configurations refer
to disjoint sets of subjects. However, we note that these are not suitable for multi-view data.
As we show in this work, when they are applied to cluster multi-view or longitudinal data,
such methods focus on marginal inference based on each feature and fail to capture the true
nature of the multivariate dependence. In particular, in Section 2, we show how this is a
consequence of the fact that they disregard subjects’ identities, i.e., that subjects are indeed
the same for all the observed features or times.

The Bayesian literature on clustering methods for longitudinal or multi-view information
is rather limited. In this context, the core challenge is to define a probabilistic model able
to account for subjects’ identities across multiple features. Bayesian clustering approaches
that allow to both preserve subjects’ identity and provide multiple clustering configurations,
appear limited to the following specific models: the hybrid Dirichlet process (Petrone et al.
2009), the enriched Dirichlet process (Wade et al. 2011), the separately exchangeable random
partition models in Lee et al. (2013) and Rebaudo et al. (2021) and the temporal random
partition model of Page et al. (2022). Even though these models are quite different in nature,
they all belong to the novel probabilistic framework we introduce here, which also enables
gaining new insights about these existing approaches.

The main contribution of this work is the introduction of conditional partial exchangeabil-
ity (CPE), a modeling principle for multi-view and dynamic probabilistic clustering. CPE
is a condition imposed on the conditional law of the observable in multi-view data, inducing
dependence across distinct clustering configurations of the same subjects while preserving
their identities. An additional contribution is developing a specific class of mixture models
that satisfy CPE, which we refer to as telescopic clustering models. The introduction of these
models further highlights the utility of CPE. We show that these models are analytically and
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computationally tractable and establish Kolmogorov consistency of the distribution of the
observable. Finally, we investigate two models within this class in more detail: one with
an infinite number of components and another with a random number of components. We
provide algorithms for posterior estimation and showcase the performance of the proposed
framework on real and simulated data.

2 Conditional partial exchangeability

Let (X1i, X2i), be features on the i−th observational unit, with i = 1, . . . , n. For simplicity
of explanation, we partition the feature vector into two sub-components and discuss how
to extend to a number L of components in Section 3.3: X1i ∈ X1 ⊂ Rd is the observation
recorded at layer 1, which can represent, for example, either a vector of primary features
or observations corresponding to the initial time point t = 1, and X2i ∈ X2 ⊂ Rp is the
observation recorded at layer 2, which can refer to either a vector of secondary features
or observations corresponding to a subsequent time point t = 2. Importantly, the support
spaces X1 and X2 are not assumed to coincide. In particular, the dimensions d and p may be
different. Our goal is to estimate two clustering configurations ρ1 and ρ2, which correspond to
the first and second layers, respectively, allowing for dependence between the two clustering
configurations and employing a learning mechanism that takes into account subjects’ iden-
tity thus capturing multivariate dependence. The partition ρj, j = 1, 2, can be represented
by the vector cj = (cj1, . . . , cjn) of subject-specific allocation variables, whose elements take
value in the set [n] := {1, 2, . . . , n} and are such that cji = cjl if and only if subjects i and
l belong to the same cluster at layer j. As typically done, we assume exchangeability for
the joint observations (X1i, X2i)i≥1, i.e., P [(X1i, X2i)

n
i=1 ∈ A] = P

[
(X1σ(i), X2σ(i))

n
i=1 ∈ A

]
for

any σ permutation of n elements, n ≥ 1, and measurable set A ⊆ (X1 × X2)
n. A review

of key preliminaries on exchangeable partitions and partial exchangeability is provided in
Section S1 of the Supplement. For the sake of clarity, assume that the clustering configu-
rations fully capture the dependence structure between first and second layers features, i.e.,
(X11, . . . , X1n) ⊥ (X21, . . . , X2n) | ρ1, ρ2. The latter is a common assumption in clustering
models for multivariate data (see, e.g., Rogers et al. 2008, Kumar et al. 2011, Lock & Dunson
2013, Gao et al. 2020, Franzolini, Cremaschi, van den Boom & De Iorio 2023) as it often
avoids identifiability issues. Nonetheless, it can be relaxed.

Exchangeability of the bivariate observations does not imply conditional exchangeability
of one layer given the other, which is instead undesirable in a multi-view setting. To better
understand this point, let us see what happens if we do assume exchangeability for observa-
tions in the second layer conditionally on the first-layer partition, ρ1. Formally, (X2i)i≥1 is
conditionally exchangeable with respect to ρ1, if, for any realization of ρ1, for any n ≥ 1 and
for any permutation σ,

p(X21, . . . , X2n | ρ1n) = p(X2σ(1), . . . , X2σ(n) | ρ1n) (1)

where p denotes a joint density function (to be understood as a mass function in the discrete
case). This implies, for instance, that the joint distribution of a pair of second-layer obser-
vations is invariant to their clustering allocations at layer 1, in the sense that, for any set of
three subjects i, j and k, p(X2i, X2j | c1i = c1j ̸= c1k) = p(X2i, X2k | c1i = c1j ̸= c1k). Thus,
under conditional exchangeability, knowing that subjects i and j belong to the same cluster
at layer 1 does not provide any information at layer 2 specific to those same two subjects,
i.e., the model does not preserve subjects’ identities. This unusual behavior of the learning
mechanism under conditional exchangeability arises because this assumption restricts the
transfer of subject-level information (e.g., which subjects belong to the same cluster in ρ1)
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between layers. Instead, only population-level information, such as the number of clusters
and their frequencies in ρ1, is propagated to the next layer. (cf., Page et al. 2022). However,
this assumption is also at the core of the majority of dependent Bayesian clustering methods
(see, Quintana et al. 2022, for a recent review), which are thus appropriate for multi-sample
data but cannot be effectively applied in longitudinal and multi-view settings. An alterna-
tive to conditional exchangeability (of the second layer given ρ1) is offered in the Bayesian
nonparametric literature by the Enriched Dirichlet process (Wade et al. 2011), which in con-
trast induces conditional independence, i.e., given ρ1, observations at the second layer are
assumed exchangeable if they belong to the same first-layer cluster and independent other-
wise. However, enriched constructions do not allow to define a prior for (ρ1, ρ2) with full
support because they force second-layer clusters to be nested within first-layer clusters: if
two items are assigned to distinct clusters at layer 1, they cannot be assigned to the same
cluster at layer 2.

To define a flexible and general learning mechanism for Bayesian clustering of multi-view
or longitudinal data, clusters defined by ρ1 should be treated neither as almost irrelevant as
under conditional exchangeability nor as too informative as under the conditional indepen-
dence of enriched constructions. Ideally, an appropriate learning mechanism would a priori
favor at layer 2 a clustering configuration similar to layer 1, but not necessarily nested. A
general framework to achieve this goal is currently missing and it is the main contribution of
this work. To this end, we introduce conditional partial exchangeability (CPE), formalized by
the following definition and discussed thereafter. Given a partition ρ1 and the corresponding
subject- specific allocation variables c1, let us denote with P(n; ρ1) the set of permutations
of [n] that preserve ρ1, i.e. σ ∈ P(n; ρ1n) if and only if σ is a permutation of n elements such
that c1σ(i) = c1i, for any i ∈ [n].

Definition 1 (Conditional partial exchangeability). Given a (marginally) exchangeable se-
quence (X2i)i≥1 and a collection of coherent1 random partitions (ρ1n)n≥1, where ρ1n is a
partition of [n], (X2i)i≥1 is said to be conditionally partially exchangeable (CPE) with re-
spect to (ρ1n)n≥1 if and only if, for any n ≥ 1, for any realization of ρ1n, and for any
(i1, . . . , iℓ), (j1, . . . , jℓ) ⊂ [n], the following two conditions are satisfied

c-i) p(X21, . . . , X2n | ρ1n) = p(X2σ(1), . . . , X2σ(n) | ρ1n), for any σ ∈ P(n; ρ1n);

c-ii) p(X2i1 , . . . , X2iℓ | c1i1 = . . . = c1iℓ) = p(X2j1 , . . . , X2jℓ | c1j1 = . . . = c1jℓ).

To fully understand Definition 1, we need first to consider the fundamental differences
between CPE (introduced here) and partial exchangeability (as presented by de Finetti
1938, and quickly reviewed in Section S1 of the Supplement). Importantly, partial exchange-
ability is a condition on the marginal distributions of a sequence of observations, thereby
defining a class of sequences. In contrast, CPE specifies a condition on the dependence
between a sequence of exchangeable observations and a random partition, thereby defining
a class of dependence relationships. Moreover, considering the conditions required for the
conditional law of the observations, CPE differs from partial exchangeability not only in
its conditional nature, imposed by condition (c-i), but also in its requirement for marginal
invariance, imposed by condition (c-ii). Condition (c-ii) entirely lacks an analog in the def-
inition of partial exchangeability. For a more intuitive understanding of CPE: assume the
observations are partitioned according to a clustering configuration at layer 1. Condition-
ing on this layer-1 partition, the observations exhibit partial exchangeability at layer 2, i.e.,
in layer 2, exchangeability holds among observations that are co-clustered in layer 1, but

1the collection of partitions (ρ1n)n≥1 is said to be coherent if for any n, ρ1n can be obtained from ρ1n+1

by removing the object n+ 1.
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not necessarily across different layer-1 clusters (c-i). Moreover, CPE requires that groups
of observations corresponding to different layer-1 clusters preserve the same within-cluster
marginal distribution at the subsequent layer (c-ii), e.g., p(X21 | c11) = p(X22 | c12) and
p(X21, X22 | c11 = c12) = p(X23, X24 | c13 = c14).

For the sake of notation, in the following, we omit the subscript n when denoting the
partition. The next theorem shows that CPE allows the preservation of subjects’ identities
when moving from one layer to another.

Theorem 1 (Subjects’ identity across layers). If (X2i)i≥1 is conditionally partially exchange-
able with respect to an exchangeable partition ρ1, then, for any measurable A

s-i) P((X2i, X2j) ∈ A2 | c1i = c1j ̸= c1k) ≥ P((X2i, X2k) ∈ A2 | c1i = c1j ̸= c1k);

s-ii) in general, p(X2i, X2j | c1i ̸= c1j) ̸= p(X2i | c1i ̸= c1j)p(X2j | c1i ̸= c1j),

where a strict inequality in s-i) is achievable as long as (X2i)i≥1 is not conditionally ex-
changeable with respect to ρ1.

All proofs can be found in the Appendix. To preserve subjects’ identity, we will al-
ways require that the inequality s-i) in Theorem 1 is strict for any measurable A: 0 <
P(X2i ∈ A) < 1. This ensures the non-degeneracy of conditional exchangeability in (1)
for which the left and right terms in s-i) would be equal. Moreover, we will also require
the inequality in s-ii) to hold, and, thus, the non-degeneracy of conditional independence
of enriched constructions. Nonetheless, CPE recovers conditional exchangeability (as in the
models in Quintana et al. 2022) and conditional independence (as in enriched constructions)
as limiting cases of minimal and maximal preservation of subjects’ identities, correspond-
ing to P((X2i, X2j) ∈ A2 | c1i = c1j ̸= c1k) = P((X2i, X2k) ∈ A2 | c1i = c1j ̸= c1k) and
p(X2i, X2j | c1i ̸= c1j) = p(X2i | c1i ̸= c1j)p(X2j | c1i ̸= c1j), respectively.

The following propositions illustrate how existing Bayesian clustering approaches do sat-
isfy or not CPE.

Proposition 1 (Temporal random partition model). If (X1i, . . . , XT i)
n
i=1 follows the tem-

poral random partition model (t-RPM) of Page et al. (2022) - Section 2, then (Xti)i≥1 is
conditionally partially exchangeable with respect to ρt−1, but not conditionally exchangeable.

Proposition 2 (Separately exchangeable NDP-CAM). If (X1i, . . . , XJi)i≥1 follows the sepa-
rate exchangeable random partition model of Rebaudo et al. (2021) - Section 3, then, for any j
and j′, (Xji)i≥1 is conditionally partially exchangeable with respect to ρ′j but not conditionally
exchangeable.

Proposition 3 (Dependent Dirichlet processes). If (X1i, X2i)i≥1 follows a mixture model
with mixing probabilities provided by dependent processes of the type described in MacEach-
ern (2000) and Quintana et al. (2022) = Section 2, then, conditionally on ρ1, (X2i)i≥1 is
conditionally exchangeable.

Finally, for the remainder of this work, we demonstrate that the strength of CPE extends
beyond providing a condition to preserve subjects’ identities in multi-view probabilistic clus-
tering. Instead, it can also serve as a constructive definition that, due to its conditional
formulation, facilitates the development and analysis of various clustering processes while
ensuring analytical and posterior computational tractability.
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3 The class of telescopic clustering models

3.1 A general telescopic clustering model

First-layer observations (X1i)
n
i=1 are assumed to be distributed according to a mixture model

(Ferguson 1983, Lo 1984):

X1i | p̃1
iid∼
∫
Θ1

k1(X1i, θ) p̃1(dθ), for i = 1, . . . , n, (2)

where k1(·, ·) is a kernel defined on (X1,Θ1), p̃1 is an almost-surely discrete random proba-
bility, i.e., p̃1

a.s.
=
∑M

m=1 wmδθ⋆m , with M ∈ N∪{+∞} and (wm, θ
⋆
m)

M
m=1 random variables such

that
∑M

m=1 wm
a.s.
= 1. In the following, for notational convenience, the set [M ] := {1, . . . ,M}

denotes the set of the first M natural numbers, when M is finite, and the set of the natural
numbers N, when M = ∞. Model (2) can be rewritten in terms of the allocation vector

c1 = (c11, . . . , c1n), i = 1, . . . , n, defined in Section 2: X1i | c1i = m,θ⋆ ind∼ k1(X1i; θ
⋆
m). In the

following, we assume that the subject-specific allocation variables c1 and the independent
and identically distributed cluster-specific parameters θ⋆ = (θ⋆m)

M
m=1 are apriori independent

so that the corresponding mixing random probability p̃1 belongs to the class of species sam-
pling processes (Pitman 1996). To satisfy CPE, the second-layer conditional model is defined
as

X2i | c1i = m, (p̃21, . . . , p̃2M)
ind∼
∫
Θ2

k2(X2i, θ) p̃2m(dθ), for i = 1, . . . , n, (3)

where k2 is a kernel defined on (X2,Θ2), M ∈ N ∪ {+∞} is the number of mixture com-
ponents at the first layer, (p̃21, . . . , p̃2M) is a vector of (possibly dependent) almost-surely
discrete and exchangeable random probability measures. Thus, when M = ∞, (p̃21, . . . , p̃2M)
is a countably infinite number of probability measures indexed by N. Bringing everything
together, we arrive at the following definition for this class of models.

Definition 2 (Telescopic clustering model). A random matrix (X1i, X2i)i≥1 taking values in
(X1 × X2)

∞ is said to follow a telescopic clustering model (with two layers) if it admits the
following representation:

X1i | p̃1
iid∼
∫
Θ1

k1(X1i, θ) p̃1(dθ), for i = 1, 2, . . .

X2i | c1i = m, (p̃21, . . . , p̃2M)
ind∼
∫
Θ2

k2(X2i, θ) p̃2m(dθ), for i = 1, 2, . . .

with p̃1 ∼ P1 and (p̃21, . . . , p̃2M) ∼ P2, and where k1 and k2 are kernels defined on (X1,Θ1)
and (X2,Θ2), respectively; c1 = (c11, . . . , c1n) is a configuration of the allocation variables
corresponding to the random partition ρ1 induced by the marginal mixture model of (X1i)

n
i=1;

M ∈ N∪{+∞} is the number of mixture components in the marginal model of (X1i)
n
i=1; the

prior P1 is such that p̃1 is an almost-surely discrete random probability measure; the prior P2

is such that (p̃21, . . . , p̃2M) are almost-sure discrete (possibly dependent) exchangeable random
probability measures.

A specific model is then obtained when the prior distributions P1 and P2 for p̃1 and
(p̃21, . . . , p̃2M), respectively, are chosen.

The next theorem provides the hierarchical representation of the joint model for the data
matrix.
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Theorem 2 (Telescopic clustering - joint representation). If (X1i, X2i)i≥1 follows a telescopic
clustering model with two layers, as in Definition 2, then, for i = 1, 2, . . ., there exist θi, ξi,
and p̃, such that

(X1i, X2i) | (θi, ξi)
ind∼ k1(X1i, θi)k2(X2i, ξi), (θi, ξi) | p̃

iid∼ p̃
a.s.
=

M∑
m=1

S∑
s=1

wmqmsδ(θ⋆m, ξ⋆s ).

From the conditional construction of telescopic clustering models, it is trivial to prove
that they satisfy CPE. In Theorem 2 we prove that the joint observations (X1i, X2i)i≥1

are exchangeable across i and that their law is Kolmogorov-consistent in n. The latter
condition is sometimes referred to as marginal invariance (Dahl et al. 2017) or projectivity
(Betancourt et al. 2022) and, roughly speaking, implies that the model is suitable for drawing
inferences on an infinite population since the distribution employed to model a finite sample
n is extendable. Here, Kolmogorov consistency follows directly from the conditional-i.i.d.
sampling of (θi, ξi) in Theorem 2 and de Finetti’s theorem (De Finetti 1937) for infinite
exchangeable sequences of random variables.

Finally, if a global clustering structure (i.e., based on all layers) is of interest, the tele-
scopic model still provides appropriate inference. Indeed, in telescopic clustering, global
clusters are defined as the common refinement of the partitions at different layers, i.e., two
subjects belong to the same global cluster if they belong to the same cluster at all layers.
Still, the main goals of telescopic clustering models is different: (1) provide also, possibly
different, clustering configuration at each layer, (2) allow global clusters to share all or a
subset of latent parameters at any layer (cfr., Petrone et al. 2009), (3) allow more flexible
transfer of information across features, which translates into better inferential performance
(see Section 7.1), (4) allow investigating dependence between features in terms of dissimilari-
ties between clustering configurations at different layers. The latter point is more extensively
described in the next section.

3.2 Measures of telescopic dependence

The class of models described above allows for a bi-variate clustering configuration of the
same observational units taking into account within-subject dependence. In this section,
four dependence measures between clustering configurations (at the different layers) are
presented. The measure of telescopic dependence and the telescopic adjusted Rand index
are novel measures of dependence that capture specific properties of telescopic clustering
models, while the remaining two are widely used measures: the expected Rand index and
the expected Binder loss.

In telescopic clustering models, the probability of any two subjects being clustered to-
gether at layer 2 depends on whether they were clustered together at layer 1, with a higher
probability if they were already clustered together than if they were not. This result follows
directly from the fact that, in partially exchangeable mixture models with equal marginal dis-
tributions, the probability of ties within a group is always at least as high as the probability
of ties across groups (for details, see, Ascolani et al. 2024, Franzolini 2022, Franzolini, Lijoi,
Prünster & Rebaudo 2023). In light of this, we define a conditional measure of similarity
between ρ1 and ρ2 as a normalized difference between conditional probabilities of ties.

Definition 3 (Measure of telescopic dependence). Given two random partitions ρ1 and ρ2
of the same subjects,

τ =
P[c2i = c2j | c1i = c1j]− P[c2i = c2j | c1i ̸= c1j]

P[c2i = c2j | c1i = c1j]
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is called measure of telescopic dependence between ρ1 and ρ2.

By definition, τ ∈ [0, 1] and τ = 1 if and only ifP[c2i = c2j | c1i ̸= c1j] = 0, while τ = 0
if and only ifP[c2i = c2j | c1i = c1j] = P[c2i = c2j | c1i ̸= c1j]. It is immediate to show
that when ρ1 and ρ2 are independent, then τ = 0. On the other hand, under the enriched
Dirichlet process τ = 1, indicating maximum telescopic dependence, while in our framework
τ ∈ [0, 1]. This is due to the fact that in telescopic clustering P[c2i = c2j | c1i ̸= c1j] can
be positive, while in the enriched Dirichlet process the same probability is equal to zero
for any value of the hyperparameters, resulting in a smaller support for the joint prior of
the partitions. The measure τ of telescopic dependence is an asymmetric measure, which is
computed conditionally on the allocation at layer 1.

Denote with Π(n) the space of partitions of n elements and with p(ρ1, ρ2) the joint
probability law of the two clustering configurations induced by a telescopic clustering model,
which we name telescopic exchangeable partition probability function (t-EPPF). In general,
the t-EPPF has full support on the space of bi-variate clustering configurations Π(n)2, while
still encoding dependence between clustering configurations. In the following, we consider
the expected Rand index (ER) and the expected Binder loss (EB) between ρ1 and ρ2, defined
respectively as

ER =

(
n

2

)−1 ∫
Π(n)2

[a(ρ1, ρ2) + b(ρ1, ρ2)] d p(ρ1, ρ2)

EB =

∫
Π(n)2

[c(ρ1, ρ2) + d(ρ1, ρ2)] d p(ρ1, ρ2)

where a, b, c, and d are functions of the partitions: a returns the number of pairs of obser-
vations clustered together both at layer 1 and 2, b the number of pairs clustered together
neither at layer 1 nor 2, c the number of pairs clustered together at layer 1, but not at layer
2, and d the number of pairs clustered together at layer 2 but not at layer 1.

Proposition 4 (Dependence measures as functions of the number of clusters). In a telescopic
clustering model, a priori

τ =
P(K22 = 1 | K12 = 1)− P(K22 = 1 | K12 = 2)

P(K22 = 1 | K12 = 1)

ER = P(K12 = K22), EB =

(
n

2

)
P(K12 ̸= K22)

where Kℓn denotes the number of clusters at layer ℓ in a sample of n subjects.

As noted by Hubert & Arabie (1985), when the Rand index is used to compare random
partitions, its expected value is not 0 in case of independence of the partitions. In a telescopic
clustering, when ρ1 and ρ2 are independent, the expected value of the rand index is ER⊥ =∑2

κ=1 P(K12 = κ)P(K22 = κ) where ⊥ denotes independence (see Proposition 4 above).
Thus, ER⊥ is typically positive. In the same spirit as that of the adjusted Rand index
(Hubert & Arabie 1985), we define a telescopic adjusted rand-index that allows us to correct
for the randomness of the partitions.

Definition 4 (Telescopic adjusted Rand index). The telescopic adjusted Rand index between
ρ1 and ρ2 is defined as

TARI =
[a(ρ1, ρ2) + b(ρ1, ρ2)]− ER⊥

1− ER⊥

It is trivial to prove that, in the case of independence, the a priori expected value of the
TARI equals 0.
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3.3 Extension to L layers using polytrees

ρ1 ρ2 ρ3 . . . ρt . . . ρT . . .

Figure 2: Layer dependence for longitudinal data.

The class of telescopic models as presented in the previous sections defines a prior distribution
for the joint law of two partitions, ρ1 and ρ2, through the product p(ρ1) p(ρ2 | ρ1) where p(ρ1)
and p(ρ2 | ρ1) are used to denote the marginal law of the partition ρ1 and the conditional
law of the partition ρ2, respectively.

The main advantage and novelty of this class of models lie in how the dependence be-
tween the two partitions is defined through the CPE, which ultimately specifies a one-way
relationship from ρ1 to ρ2, denoted in the following as ρ1 → ρ2.

ρX

ρZρY

Figure 3: Triangular
dependence for three
layers.

A straightforward way to extend the modeling strategy to any
number of layers is by combining multiple pairwise relationships in
a polytree. For instance, in the context of longitudinal data, where
different measurements are collected at different time points a Marko-
vian structure across different layers can be imposed. The resulting
telescopic clustering model is then obtained assuming CPE between
Πt and Πt+1 for any t ∈ N, i.e., p(ρt, t = 1, 2, . . .) = p(ρ1)

∏∞
t=2 p(ρt |

ρt−1). See Figure 2.
A second extension that we consider in this work involves combin-

ing the dependence across three sets of features through the triangular
graph represented in Figure 3. In this setting, given the clustering

configuration of X, which is the response variable of main interest, the goal is to also infer
additional clustering configurations for two other sets of variables: Y and Z. Then, the
t-EPPF of the model is given by p(ρX , ρY , ρZ) = p(ρX)p(ρY | ρX)p(ρZ | ρX). The polytrees
strategy is based on a partial ordering of the different layers, due to the fact that each node
in the graph can have at most one parent node and the multivariate dependence across layers
is obtained by combining pairwise dependence only. Nonetheless, in the structure in Fig-
ure 3, the CPE induces a mutual (undirected) dependence between ρY and ρZ in the sense
that, when p(ρY | ρX) = p(ρZ | ρX), the conditional law of ρZ given ρY is the same as the
conditional law of ρY given ρZ .

4 A telescopic model with infinite number of labels

Hierarchical constructions for dependent processes, initially introduced in Teh et al. (2006),
offer a powerful framework for modeling dependence across random distributions. In Teh
et al. (2006), the construction is based on the Dirichlet process and it was further extended
to encompass more general processes in Camerlenghi et al. (2019), Argiento et al. (2020),
and Bassetti et al. (2020). We employ this construction to build up the telescopic mixtures
with hierarchical Dirichlet processes (t-HDP), where we set as prior for the first-layer random
probability p̃1 an HDP, which defines the law of a single process (for details and generalization
of this prior, see Camerlenghi et al. 2018) such that

p̃1 | γ, p̃0 ∼ DP (γ, p̃0), p̃0 | γ0 ∼ DP (γ0, Pθ), (4)
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while the second-layer conditional law is

X2i | c1, (p̃21, p̃22 . . . , )
ind∼
∫

f(X2i, θ)p̃2ci(dθ)

p̃2m | α, q̃0
iid∼ DP (α, q̃0), q̃0 | α0 ∼ DP (α0, Pξ),

(5)

where DP (α, P ) denotes a Dirichlet process with concentration parameter α and base dis-
tribution P . Consider a specific partition ρ1 into K1n sets of numerosities n1, . . . , nK1n for
the first-layer partition. Then, we have (see, Camerlenghi et al. 2018)

P[ρ1 = ρ] =
γK1n
0

(γ)(n)

∑
ℓ

γ|ℓ|

(γ0)(|ℓ|)

K1n∏
m=1

(ℓm − 1)!|s(nm, ℓm)| (6)

where |s(n, k)| denotes the signless Stirling number of the first kind and the sum in (6) runs
over all vectors (l1, . . . , lK1n) such that lm ∈ [nm] and (γ)(n) = Γ(γ + n)/Γ(γ), where Γ(x)
denote the Gamma function in x. The conditional law of the partition at layer 2, given ρ1,
is

P[ρ2 = ρ | ρ1] =
αK2n
0∏K1n

m=1(α)
(nm)

∑
t

α|t|

(α0)(|t|)

K2n∏
s=1

(t·s − 1)!

K1n∏
m=1

|s(nms, tms)| (7)

where the sum runs over all matrices K1n ×K2n, whose generic element tms belong to [nms]
provided that nms ≥ 1, and is equal to 1 when nms = 0. Moreover, t·s =

∑K1n

m tms. See
Camerlenghi et al. (2019).

Theorem 3 (t-EPPF in the t-HDP model). Given a telescopic mixture model with hierar-
chical Dirichlet processes and two layers, p(ρ1, ρ2) is given by

γK1n
0 αK2n

0

(γ)(n)
K1n∏
m=1

(α)(nm)

∑
ℓ,t

γ|ℓ|α|t|

(γ0)(|ℓ|)(α0)(|t|)

(
K1n∏
m=1

(ℓm − 1)!|s(nm, ℓj)|

)
K2n∏
s=1

(t·s − 1)!

K1n∏
m=1

|s(nms, tms)|

Starting from the expression of the t-EPPF, it is straightforward to compute the indexes
of dependence introduced in Section 3.2.

Corollary 1 (Measures of dependence in the t-HDP model). In a t-HDP, the measure τ of

telescopic dependence is τ = α0

α0+α+1
and the expected Rand index is ER = (1+γ0+γ)(1+α0+α)+γ0 α0 γ α

(γ0+1)(γ+1)(α0+1)(α+1)
.

Thus, τ tends to 0 as α tends to ∞ and to 1 as α0 tends to ∞. Finally, at layer
1, alternative priors might be more suitable depending on the application, such a non-
hierarchical prior such as the classical Dirichlet Process (Ferguson 1973), or the Pitman-Yor
process (e.g., Pitman & Yor 1997). However, incorporating a hierarchical structure in the
subsequent layers is essential for achieving conditional partial exchangeability.

5 A telescopic model with random number of labels

The t-HDP model introduced in the previous section assumes that the number of sub-
populations (or components) in the mixtures equals infinity, which is a classical modelling
assumption in Bayesian nonparametric mixtures models. Nonetheless, an alternative suc-
cessful strategy consists in assuming that the number M of sub-populations is almost-surely
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finite and placing a prior over M . The second telescopic model introduced here lies within
this framework. The prior for the first-layer random probability p̃1 is defined by

p̃1 =
M∑

m=1

wmδθ⋆m

w = (w1, . . . , wM) | M ∼ Pw, θ⋆m | M iid∼ Pθ, for m = 1, . . . ,M, M ∼ PM ,

(8)

where w and θ⋆ = (θ⋆1, . . . , θ
⋆
M) are independent and PM has support on the set of the

natural numbers N. The resulting marginal model for the first layer is a finite mixture with
a random number of components (Nobile 1994, Miller & Harrison 2018, Argiento & De Iorio
2022). Depending on the choice of Pw different finite-dimensional prior processes can be
employed as priors for the finite mixture construction. In the following, we focus on the
Dirichlet distribution as prior for the weights, as it is the most popular in applications, i.e.,
w = (w1, . . . , wM) | M,γ ∼ DirichletM (γ, . . . , γ). Then, the conditional law of the second
layer is defined employing a novel construction for the mixing random probability measures,
whose formal construction is detailed in the following definition.

Definition 5 (Unique-atom process). A vector of random probabilities (p̃1, . . . , p̃K) is a
unique-atom process if they admit the following almost-sure discrete representation: p̃m

a.s.
=

(1 − Z) δξ⋆m + Z p̃0 for m = 1, . . . , K, with Z ∼ Bernoulli(ω), where p̃0 is an almost-surely

discrete random probability, ξ⋆m
iid∼ Pξ, for m = 1, . . . , K, and p̃0, (ξ

⋆
m)

K
m=1, and Z are pairwise

independent.

In the following, we make use of unique-atom processes where the common p̃0 in the
previous definition is a random probability with a random (almost-surely finite) number
of support points and Dirichlet weights, i.e., p̃0

a.s.
=
∑S

s=1 qsδξ⋆0s with S ∼ PS, weights qs

distributed accordingly to a symmetric Dirichlet distribution and ξ⋆0s
iid∼ Pξ. The rationale

behind the construction in Definition 5 is the following: when the random variable Z = 0,
the clustering structure is kept constant from one layer to the next, while when Z = 1,
the clustering structure is estimated independently from the clustering arrangement at the
previous layer. Employing unique-atom processes to build up CPE needed for telescopic
clustering, we get the following second-layer specification

X2i | c1, q, ξ, S, Z
ind∼ (1− Z)k2(X2i; ξ

⋆
c1i
) + Z

S∑
s=1

qsk2(X2i; ξ
⋆
0s)

q = (q1, . . . , qS) | S, α ∼ DirichletS(α, . . . , α)

ξ⋆0s | S
iid∼ Pξ, ξ⋆m | K1n

iid∼ Pξ, S ∼ PM , Z ∼ Bernoulli(ω).

(9)

The joint law of the two partitions is provided by the next theorem.

Theorem 4 (t-EPPF in the telescopic unique atom process). Given a telescopic mixture
with unique atom processes, the t-EPPF is

p(ρ1, ρ2) =(1− ω)V (n,K1n)

K1n∏
m=1

Γ(γ + nm)

Γ(γ)
1(ρ1 = ρ2)

+ω V (n,K2n)

K2n∏
s=1

Γ(α +
∑K1n

m=1 nms)

Γ(α)
V (n,K1n)

K1n∏
m=1

Γ(γ + nm)

Γ(γ)

where V (n,K) =
+∞∑
M=1

M(K)

(γK)(n)pM(M).
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Corollary 2 (Measures of dependence in the telescopic unique atom process). In a telescopic
mixture with unique atom processes, τ = 1−ω

1+ω(E[S]/α−1)
and

ER =
E[M ]

γ

(
1− ω + ω

E[S]
α

)
+

E[M(M − 1)]γ2

4γ2 + 2γ

(
1− ω + ω

E[S(S − 1)]

4α2 + 2α

)
.

Thus, τ tends to 1 as ω tends to 0 and to 0 as ω tends to 1.

6 Algorithms for posterior inference

Similarly to existing Bayesian mixture models, also in telescopic clustering models, posterior
inference can be performed through either conditional or marginal Markov chain Monte Carlo
(MCMC) algorithms. The conditional algorithms make use of representation theorems and
also provide posterior samples of the underlying random probability measures (see, for in-
stance, Ishwaran & James 2001, Walker 2007). Nonetheless, when the number of components
is infinite, conditional algorithms typically require to rely on a truncated approximation of
the underlying random probability measure. In contrast, the marginal algorithms are derived
through marginalization of the random probability (see, for instance, Neal 2000).

In the case of telescopic clustering models, marginal algorithms require evaluating the
conditional law of the partition at the child nodes when sampling the cluster allocation
at any given parent layer. However, evaluating this conditional law is typically computa-
tionally intensive, and introducing latent random variables to reduce the cost is not always
straightforward. For example, in t-HDP models, the standard data augmentation provided
by the Chinese restaurant franchise process (Teh et al. 2006) simplifies the conditional law
of the partition to be evaluated but significantly slows down the mixing to unfeasible levels
(for details, see Sections S3 and S4 of the Supplement). Therefore, enabling inference using
marginal algorithms requires a tailored variable augmentation scheme for each telescopic
clustering model.

On the other hand, the conditional sampling scheme for the t-HDP model exhibits good
mixing and significantly lower computational time per iteration, making posterior inference
feasible and, importantly, easily adaptable to different poly-tree structures and prior choices
(for details, see Sections S2, S3, and S6 of the Supplement).

For these reasons, the results presented in the following sections are obtained via a
truncated blocked Gibbs sampler. This algorithm is a conditional one, easier to generalize
within the class of telescopic clustering models, provided that the full conditionals of the
weights of the random probability measures are available. Unlike the marginal sampling
scheme, it does not require model-specific data augmentation techniques, making it the
preferred choice for this work. However, it relies on a truncated version of the random
probability measures when the number of components is infinite, as in the t-HDP, and
thus incurs a truncation error cost. Thus, this approach incurs a truncation error cost. A
promising direction for future research is the adaptation of such schemes using slice sampling
techniques (Walker 2007, Kalli et al. 2011), as has been recently applied to the classical HDP
in (Amini et al. 2019) and Das et al. (2024). It is important to notice that the availability
of conditional sampling schemes depends on the existence of (conditional) representation
theorems and underlying random probabilities, which, thus, for telescopic clustering, are
not only an analytical and probabilistic result but a fundamental computational tool. A
detailed derivation of the sampling schemes, computational cost, and mixing performance
for telescopic models are in Sections S3, S4, and S7 of the Supplement.
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Rand Index # Mistakes
Layer k-means t-HDP LSBP E-DP k-means t-HDP LSBP E-DP
n.1 0.98 0.98 0.98 0.50 2 2 2 100
n.2 0.98 1.00 0.98 0.90 2 0 2 10
n.3 0.92 0.98 0.92 1.00 8 2 8 0
n.4 0.98 1.00 0.98 0.92 2 0 2 17
n.5 0.92 0.97 0.91 0.89 8 3 9 21
n.6 0.97 0.98 0.97 0.86 3 2 3 31
n.7 0.94 0.99 0.92 0.83 6 1 8 40
n.8 0.95 1.00 0.95 0.79 5 0 5 44
n.9 0.93 1.00 0.93 0.79 7 0 7 47
n.10 0.91 0.99 0.89 0.75 9 1 11 54

average 0.95 0.99 0.83 0.82 5.2 1.1 5.7 36.4

Table 1: Scenario 1, Rand indexes between the estimated and true clustering configurations
and numbers of items allocated to the wrong cluster.

7 Numerical studies

7.1 Simulation study

Here we report results for a few simulations, additional simulation studies with different
numbers of layers and misspecification can be found in Section S5 of the Supplement, together
with additional results regarding the simulations described here below.

In the first simulation scenario (Scenario 1), we generate data on n = 200 items and T =
10 layers. At each layer, marginally we assume two clusters simulated from two univariate
Normal distributions with unitary variance and centered in 0 and 4 respectively. From one
layer to the next, 10 items (5% of the total) are selected at random and moved to the other
cluster.
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Figure 4: Scenario 2. Rand indexes between
the truth and the estimated configuration.

We compare four methods: (i) k-means
fitted independently at each layer, where the
number of clusters is determined by the gap
statistics (Tibshirani et al. 2001); (ii) the t-
HDP’s estimate; (iii) the estimate obtained
with a logit stick-breaking process (LSBP)
(Ren et al. 2011); and (iv) the estimate
from an Enriched Dirichlet process (E-DP)
(Wade et al. 2011). For the LSBP, the layer’s
number is used as a covariate for both the
weights and the atoms (for more details and
algorithms, see, Rigon & Durante 2021). For
models (ii)-(iv), we use a Gaussian kernel for
the nonparametric mixture with a Normal-
InverseGamma for the mean and the vari-
ance as base measure. We report as a point

estimate for the clustering configuration the one that minimizes the variation of informa-
tion loss (Meilă 2007). Table 1 summarises the results. The t-HDP model outperforms the
competitors both consistently at each layer and overall. In Scenario 2, data for T = 100
layers are simulated. At each layer, there are two clusters with 100 observations each. At

layer 1, data are sampled from X1i | c1i
ind∼ N (0, 1)1(c1i = 1) + N (3, 1)1(c1i = 2) Then,

from layer ℓ to layer ℓ+ 1, 2% of the observations are selected at random and moved to the
other cluster. Figures 4 and 5 summarize the results of the t-HDP model and independent
k-means clustering, where again the t-HDP outperforms k-means. Posterior estimates are
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obtained by minimizing the variation of information loss (Meilă 2007) and by employing the
gap statistics (Tibshirani et al. 2001).

(a) True dependence (b) t-HDP estimate (c) k-means estimate

Figure 5: Simulation study: results for Scenario 2. Pairwise Rand indexes between any
couple of layers for (a) the true clustering configurations; (b) the t-HDP model; (c) k-means.

7.2 An application to childhood obesity
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Figure 6: Estimated clustering configuration for the GUSTO cohort data. Nodes in the
graph represent different clusters and colors different layers. The percentage within the
nodes denotes the amount of children assigned to that cluster. Edges are drawn from each
growth-trajectory cluster towards the mother cluster and metabolites cluster to which the
majority of children in that particular cluster are assigned.

In this section, we investigate childhood obesity patterns and their relationship with
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metabolic pathways, as well as traditional clinical markers for mothers employing the t-
HDP. Data are available on a sample of n = 553 children from the Growing Up in Singapore
Towards healthy Outcomes (GUSTO) cohort study, based in Singapore (Soh et al. 2014).

The first layer of information consists of z-BMI trajectories, including ten unequally
spaced measurements per child observed from ages 3 to 9. The second layer contains infor-
mation on the mother’s pre-pregnancy BMI (a known risk factor for childhood obesity) and
the fasting oral glucose tolerance test (ogtt) result conducted at week 26 of pregnancy.

In this third layer, we include concentration data of 35 metabolites measured in the
children using NMR spectroscopy. Before applying the t-HDP model, we compute principal
components of the metabolite data in the third layer, selecting the first six components based
on the scree plot and the elbow method, which collectively explain 66% of the variability. By
clustering on the principal components, we focus on global patterns of the 35 metabolites,
reducing noise and dimensionality, thus obtaining more robust and interpretable clusters.
Data from the same cohort have been also analyzed by Cremaschi et al. (2024) with the goal
of identifying metabolic pathways related to childhood obesity.

We fit the t-HDP model presented in Section 4 with multivariate independent Gaus-
sian kernels and Normal-Inverse-Chi-Squared base measures for the vectors of means and
variances. We specify a Gamma(1, 1) prior on all the concentration parameters. The total
number of features is 18, divided into three layers of dimension 10, 2, and 6, respectively.
The primary information is the growth trajectory of the child and conditionally on the clus-
tering configuration of the trajectories, we define the model for the mother-layer and the
metabolite-layer. We perform 100 000 iterations of the partially collapsed conditional block
Gibbs sampler described in Section S4.2 of the Supplement, discard the first half as burn-in,
and apply a thinning of 5 so that the final posterior sample is 10,000 draws. The estimated
clustering configurations are summarized in Table S7.1 in the Supplement and shown in
Figure 6. A detailed account of the results is provided in Section S7 of the Supplement.

The analysis identifies five distinct clusters that represent five different trajectories of
z-BMI. The trajectories exhibit relatively stable patterns across the various time points con-
sidered but largely vary across clusters in terms of average z-BMI. More precisely, approx-
imately 10% of children show consistently low z-BMI values (underweight cluster), around
14% of children fell into the cluster characterized by overweight/obesity status (obesity clus-
ter), while 26%, 28%, and 22% of children are associated to normal-weight trajectories which
are, respectively, below average, equal to average and above average, indicating a healthier
weight status as compared to the underweight cluster and the obesity cluster. At layer 2,
mothers’ clinical profiles are split into three distinct clusters. The first cluster contains a few
outliers with exceptionally high glucose levels compared to the average in the sample. The
remaining two clusters divide the mothers into two distinct groups. The first group, com-
prising 71% of mothers, exhibits below-average levels of glucose and BMI. In contrast, the
second group, consisting of 28% of mothers, is characterized by above-average levels of both
glucose and BMI. The percentage of children associated with the below-average cluster of
mothers steadily decreases across the z-BMI clusters as the z-BMI trajectory increases. This
finding suggests a positive relationship between the z-BMI trajectories of the child and the
clinical markers of the mothers. Specifically, the majority of mothers in the above-average
cluster have children with an overweight growth trajectory. This association is confirmed
in the medical literature (see, for instance, Dalrymple et al. 2019, Josefson et al. 2020, Lan-
don et al. 2020, Meek 2023, Ormindean et al. 2024). At the parallel layer 3, we estimate
two distinct clusters characterized by different concentration profiles. The first cluster en-
compasses approximately 89% of the children and the second cluster consists of 10% of the
children. Furthermore, the results indicate a relationship between obesity and metabolite
concentrations. Specifically, conditioning on any of the normal-weight clusters or on the
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underweight cluster at layer 1, leads to a very similar distribution of the children across the
two metabolite clusters. On the contrary, conditioning to the obesity cluster at layer 1, a
drastic variation in the distribution of children across the metabolite clusters is observed.
These results emphasize the role of metabolite profiles in obesity development, as it is also
well documented in the medical literature (see, for instance, Perng et al. 2014, Hellmuth
et al. 2019, Perng et al. 2020, Handakas et al. 2022, Schipper et al. 2024). The observed
associations between obesity trajectories and metabolite clusters provide further evidence of
the complex interplay between metabolic factors and weight status. For a detailed account
of the metabolite layer results, see Table S7.2 in the Supplement.

8 Conclusions and future directions

Standard clustering techniques often struggle when applied to datasets collected under a
repeated measures design, such as multi-view or longitudinal data. These scenarios require
potentially different clustering configurations for each view while still preserving subjects’
identities across them. In particular, classical model-based clustering techniques fail to ef-
fectively address this issue, as they either impose a single clustering configuration across
all views or disregard subjects’ identities across views, thereby failing to capture both the
multi-view nature of the problem and the repeated measures design underlying the data.
To overcome this challenge, we introduce conditional partial exchangeability (CPE), an in-
variance requirement for the conditional law of the observables in one view, given the clus-
tering configuration of the same units with respect to another view. When satisfied by a
probabilistic clustering model, CPE induces dependencies across views while ensuring that
subjects’ identities are preserved, as formally established in Theorem 1.
Furthermore, we introduce, characterize, and apply telescopic clustering models, a novel class
of Bayesian mixture models. This class of models highlights that the utility of CPE extends
beyond maintaining subject identities in multi-view probabilistic clustering. Rather, its
conditional formulation provides a constructive definition that facilitates the development
and analysis of diverse clustering processes while ensuring both analytical and posterior
computational tractability. We motivate our approach theoretically and conduct extensive
comparisons with a range of existing methods, consistently demonstrating that our approach
outperforms all competitors.
Finally, our framework paves the way for exciting and insightful advancements in the study
and development of dependent random partition models.
From a theoretical and probabilistic point of view, we have demonstrated that CPE preserves
subjects’ identities (as formally established in Theorem 1) and shown that some existing
Bayesian models preserving subject identities indeed satisfy CPE. However, an interesting
open question remains: whether all dependent partition models that preserve subject iden-
tities must necessarily satisfy CPE. Establishing this result would allow us to conclude that
CPE is not only a sufficient but also a necessary condition for incorporating repeated mea-
sures designs into partition models.
From a statistical and modeling perspective, further exploration of the t-HDP model (and the
telescopic clustering class in general) in its Markovian dependence formulation would be valu-
able, particularly in identifying conditions for the stationarity of the partition chain’s law.
Similarly, exploring the properties and applications of a more general polytree-dependent
structure, particularly examining the marginal distribution of partitions at the leaves where
mutual dependencies can arise, would be highly valuable.

17



A - Appendix

A1 Proof of Theorem 1

Proof of Theorem 1. By condition c-i) in the Definition 1 of Section 2 and de Finetti’s repre-
sentation theorem for partial exchangeability (de Finetti 1938) there exist p̃1, . . . , p̃K1 random
probability measures with distribution Q on PK1 , such that, conditionally on ρ1, for m and
m′ in [K1], with m ̸= m′, we have

P((X2i, X2j) ∈ A2 | c1i = c1j = m, c1k = m′) =

∫
PK1

p̃2m(A)dQ(p̃1, . . . , p̃K1)

and

P((X2i, X2k) ∈ A2 | c1i = c1j = m, c1k = m′) =

∫
PK1

p̃m(A)p̃m′(A)dQ(p̃1, . . . , p̃K1)

where, by condition c-ii) in Definition 1, for any A ∈ X2,

E[p̃2m(A)] ≥ E[p̃m(A)p̃m′(A)].

Moreover note that, in general, being p̃1, . . . , p̃K1 dependent,

P((X2i, X2j) ∈ A×B | c1i = m, c1j = m′) = E[p̃m(A)p̃m′(B)] ̸= E[p̃m(A)]E[p̃m′(B)].

A2 Proof of Proposition 1

Before proving Proposition 1, we first introduce the following Lemma.

Lemma 1. Given a (non-random) partition ρ of n elements, a vector γ = (γ1, . . . , γn) with
binary entries, and a permutation σ : [n] → [n] of n elements, let

• σ(ρ) be the partition obtained swapping the elements in the sets of ρ accordingly to σ,

• R(γ) = {i : γi = 1} and σ(γ) = (γσ(1), . . . , γσ(n))

• ρR(γ) be the “reduced partition” obtained removing from the sets in ρ all elements that
are not in R(γ) and then removing empty sets.

then

1. ρR(γ) = ρR(σ(γ))

2. σ−1
(
σ
(
ρR

(γ)
))

= ρR
(γ)

3. ρR(γ) = σ
(
ρR(γ)

)
for any γ ∈ {0, 1}n iff σ ∈ P(n; ρ)

where σ−1 denotes the inverse of σ, i.e., σ−1(i) = j, for j such that σ(j) = i and P(n; ρ)
denotes the space of permutations of n elements that preserve ρ, cf. Definition 1 in Sec-
tion 2.2.
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Proof of Lemma 1. The first statement follows trivially by definition of ρR(γ). The second
statement follows by the definition of σ−1 inverse of σ. The last statement follows by con-
sidering γ = (1, . . . , 1) and the definition of P(n; ρ).

Proof of Proposition 1. Denoting with Xti a response measured on the ith unit at time t, for
i = 1, . . . , n and t = 1, . . . , T , the t-RPM mixture model of Page et al. (2022) is defined as

Xti | θ⋆
t , ct

iid∼ k(Xti, θ
⋆
tcti

) for i = 1, . . . , n and t = 1, . . . , T

θ⋆tj | µt
ind∼ Pµt for j = 1, . . . , Kt and t = 1, . . . , T

{ct, . . . , cT} | α ∼ tRPM(α, n)

where θ⋆
t = (θ⋆t1, . . . , θ

⋆
tKt

), Kt is the number of clusters at time t, k denotes a kernel, Pµt is
an absolutely continuous distribution, ct = (ct1, . . . , ctn) is the vector of allocation variables
encoding the clustering configuration at time t, and α = (α1, . . . , αT ) ∈ [0, 1]T . For the
formal and detailed definition of

{ct, . . . , cT} | α ∼ tRPM(α, n)

we refer to the paper of Page et al. (2022), even though in the following we describe the core
of the construction.

Denoting with ρt−1 the partition encoded by ct−1, to prove CPE, we need to prove that

p(Xt1, . . . , Xtn | ρt−1) = p(Xtσ(1), . . . , Xtσ(n) | ρt−1)

for any σ ∈ P(n; ρt−1), where, we recall, that P(n; ρt−1) denotes the space of permutations
of n elements that preserve ρt−1, see Section 2.

Given a partition ρ, we denote with σ(ρ) the partition obtained by swapping the elements
in the sets of ρ accordingly to the permutation σ. In the t-RPM mixture, the conditional
law of (Xt i)

n
i=1 conditionally on the partition at the previous time point ρt−1, is defined such

that
p(Xt1, . . . , Xtn | ρt−1) =

∑
λ

p(Xt1, . . . , Xtn | ρt = λ) P(ρt = λ | ρt−1)

where, the sum runs over all partitions λ of n elements. Each summand in the sum above is
given by the product of two factors. For the first factor, we have trivially that:

p(Xt1, . . . , Xtn | ρt = λ) = p(Xtσ(1), . . . , Xtσ(n) | ρt = σ(λ))

for any permutation σ of n elements. For what concerns the second factor, the conditional
distribution P[ρt = λ | ρt−1] is defined by the introduction of the binary latent variables
in γt = (γ1t, . . . , γnt). The latent variables identify which subjects at time t − 1 will be
considered for possible cluster reallocation at time t. Specifically, let γit be defined as

γit =

{
1 if unit i is not reallocated when moving from time t− 1 to t

0 otherwise

so that
P[ρt = λ | ρt−1] =

∑
γt

P[ρt = λ | γt, ρt−1] p(γt)

where the sum runs over all binary vectors of length n and p(γt) = α
∑n

i=1 γti
t . Each summand

in the sum above is given by the product of two factors. The second factor p(γt) is invariant
with respect to any permutation σ of n elements.
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Thus, denoting with σ(γt) the vector (γσ(1)t, . . . , γσ(n)t), for any permutation σ of n el-
ements, to prove that (Xt i)i≥1 is conditionally partially exchangeable with respect to ρt−1,
we need to prove that

P[ρt = λ | γt, ρt−1] = P[ρt = σ(λ) | σ(γt), ρt−1]

for any σ ∈ P(n; ρt−1).
In t-RPM, the left and right hand side of the equation above are respectively

P[ρt = λ | γt, ρt−1] =
P[ρt = λ]I(λ ∈ P (γt, ρt−1))∑
λ′ P[ρt = λ′]I(λ′ ∈ P (γt, ρt−1))

and

P[ρt = σ(λ) | σ(γt), ρt−1] =
P[ρt = σ(λ)]I(σ(λ) ∈ P (σ(γt), ρt−1))∑
λ′ P[ρt = σ(λ′)]I(σ(λ′) ∈ P (σ(γt), ρt−1))

where, the sums at the denominators runs over all partitions λ′ of n elements, I is the
indicator function, and P (γt, ρt−1) denotes the collection of partitions at time t that are
compatible with ρt−1 based on γt. This collection is the one denoted by PCt in the paper of
Page et al. (2022).

By marginal exchangeability of ρt, we have that for any σ

P[ρt = λ] = P[ρt = σ(λ)]

Consider now the indication functions I(λ ∈ P (γt, ρt−1)) and let Rt = {i : γit = 1} be the
sets of indices of those subjects which will not be considered for reallocation time t. Page
et al. (2022) show that

I(λ ∈ P (γt, ρt−1)) =

{
1 λRt = ρRt

t−1

0 otherwise

and, thus

I(σ(λ) ∈ P (σ(γt), ρt−1)) =

{
1 σ(λ)σ(Rt) = ρ

σ(Rt)
t−1

0 otherwise

where ρRt is the reduced partition obtained removing from the sets in ρ all elements that are
not in the set Rt.

By Lemma 1, we have

σ(λ)σ(Rt) = ρ
σ(Rt)
t−1 iff σ(λ)Rt = ρRt

t−1 iff λRt = σ−1
(
ρRt
t−1

)
Therefore, by Lemma 1, I(λ ∈ P (γt, ρt−1)) = I(σ(λ) ∈ P (σ(γt), ρt−1)) for any possible
realization of γt if and only if

ρRt
t−1 = σ−1

(
ρRt
t−1

)
iff σ

(
ρRt
t−1

)
= ρRt

t−1 iff σ ∈ P(n; ρ)

which proves that t-RPM mixtures are conditionally partially exchangeable.
To prove that t-RPM mixture are not conditionally exchangeable, consider the coun-

terexample with n = 3, ρt−1 = {{1, 2}, {3}}, ρt = {{1}, {2, 3}}, and σ = (1, 3). In such a
case, the permutation σ does not preserve ρt−1 and, as a result, the law of ρt conditionally
of ρt−1 = {{1, 2}, {3}} differs from the law of ρt conditionally of ρt−1 = {{1}, {2, 3}}. As a
result, the conditional law of the sequence of observations at time t is not invariant to any
permutation, as prescribed by conditional exchangeability.
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A3 Proof of Proposition 2

Before proving Proposition 2, we first introduce the following Lemma.

Lemma 2. Given a partitions ρ of n elements and a permutation σ,

σ ∈ P(n; ρ) iff σ−1 ∈ P(n; ρ)

where σ−1 denotes the inverse of σ, i.e., σ−1(i) = j, for j such that σ(j) = i and P(n; ρ)
denotes the space of permutations of n elements that preserve ρ, cf. Section 2.

Proof of Proposition 2. If (X1i, . . . , XJi)i≥1 follows the separate exchangeable random parti-
tion mixture of Rebaudo et al. (2021), then

Xji | Sj = k,Mik = ℓ
ind∼ k(Xji, θ

⋆
ℓ ) for i = 1, 2, . . . and j = 1, . . . , J

P(Mik = ℓ | wkℓ) = wkℓ wk = (wk1, wk2, . . .)
iid∼ GEM(α)

P(Sj = k | πk) = πk π = (π1, π2, . . .) ∼ GEM(β)

θ⋆ℓ
iid∼ G0

where GEM(α) denote a stick-breaking prior for a sequence of weights (Sethuraman 1994)
and G0 is an absolutely continuous distribution. The partition ρj corresponding to the jth
layer (Xji)i≥1 is encoded by (MiSj

)i≥1 and for any n ≥ 1, j, j′ ∈ [J ] and any realization ρ of
the partition ρj′ , we have

p(Xj1, . . . , Xjn | ρj′ = ρ) =P[Sj = Sj′ ] p(Xj1, . . . , Xjn | ρj = ρ) + P[Sj ̸= Sj′ ]p(Xj1, . . . , Xjn)

and, similarly,

p(Xjσ(1), . . . , Xjσ(n) | ρj′ = ρ) =P[Sj = Sj′ ] p(Xjσ(1), . . . , Xjσ(n) | ρj = ρ)

+ P[Sj ̸= Sj′ ] p(Xjσ(1), . . . , Xjσ(n)).

Thus,

D := p(Xj1, . . . , Xjn | ρj′ = ρ)− p(Xjσ(1), . . . , Xjσ(n) | ρj′ = ρ)

=P[Sj = Sj′ ]
(
p(Xj1, . . . , Xjn | ρj = ρ)− p(Xjσ(1), . . . , Xjσ(n) | ρj = ρ)

)
=P[Sj = Sj′ ]

(
p(Xj1, . . . , Xjn | ρj = ρ)− p(Xj1, . . . , Xjn | ρj = σ−1(ρ))

)
By Lemma 2, for any σ ∈ P(n; ρ), we have D = 0, where, we recall, that P(n; ρ) denotes
the space of permutations of n elements that preserve ρ, see Definition 1 in Section 2.

To prove that the separate exchangeable random partition mixture is not conditionally
exchangeable, consider the counterexample with n = 3, ρj′ = {{1, 2}, {3}}, σ = (1, 3) and
(Xj1, Xj2, Xj3) ∈ (d(θ̄⋆ℓ − ϵ), d(θ̄⋆ℓ + ϵ), d(θ̄⋆ℓ +2ϵ)), where θ̄⋆ℓ = E[θ⋆ℓ ], ϵ > 0 and dy = [y, y+ν),
with ν arbitrarily small. In such a case, the permutation σ does not preserve ρj′ and, as a
result, the law of ρj conditionally of ρj′ = {{1, 2}, {3}} differs from the law of ρj conditionally
of ρj′ = {{1}, {2, 3}}. The conditional law of the sequence of observations corresponding to
ρj is not invariant to any permutation, as prescribed by conditional exchangeability.
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A4 Proof of Proposition 3

Proof of Proposition 3. Denoting with Xix the response measured on the ith unit corre-
sponding to covariate’s value x ∈ X and following a mixture model with mixing probability
provided by the dependent processes in MacEachern (2000), then

Xix | θ⋆
x

iid∼ k(Xix, θxi) for i = 1, . . . , n and for any x

θxi
ind∼ Gx

{Gx : x ∈ X} ∼ DDP

For a formal and detailed definition of {Gx : x ∈ X} ∼ DDP we refer to the recent review
paper of Quintana et al. (2022).

Denoting with ρx the partition induced by Gx, for any σ permutation of n elements, we
have

p(Xx′1, . . . , Xx′n | ρx) =
∫

p(Xx′1, . . . , Xx′n | Gx′ , ρx) d p(Gx′ | ρx)

=

∫
p(Xx′1, . . . , Xx′n | Gx′)d p(Gx′ | ρx) =

∫
p(Xx′σ(1), . . . , Xx′σ(n) | Gx′)d p(Gx′ | ρx)

= p(Xx′σ(1), . . . , Xx′σ(n) | ρx).

A5 Proof of Theorem 2

Proof of Theorem 2. Note that, for any n ≥ 1, the second layer observations, admit the
following almost sure representation in terms of a latent collection of probability measures
(q̃1, . . . , q̃n) such as

X2i | q̃i
ind∼
∫

k2(X2i; ξ)q̃i(dξ), where q̃i | w, p̃21, . . . , p̃2M
iid∼

M∑
m=1

wmδp̃2m

and w is the sequence of weights in the almost-sure representation of p̃1. Moreover, condi-
tioning both layers to the allocations variables c1 and the unique values θ⋆ corresponding to
the first layer, we get

(X1i, X2i) | c1i = m, θ⋆m, p̃21, . . . , p̃2M
ind∼ k1(X1i; θ

⋆
m)

(
S∑

s=1

qmsk2(X2i; ξ
⋆
s )

)
.

A6 Proof of Proposition 4

Proof of Proposition 4. Note that, for any i ̸= j, by exchangeability of the rows in the data
matrix, we have

P(cℓi = cℓj) = P(cℓ1 = cℓ2) and P(cℓi = cℓj, cℓ′i = cℓ′j) = P(cℓ1 = cℓ2, cℓ′1 = cℓ′2)

Thus

τ =
P[c21 = c22 | c11 = c12]− P[c21 = c22 | c11 ̸= c12]

P[c21 = c22 | c11 = c12]
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where the event cℓ1 = cℓ2 coincides with the event Kℓ2 = 1 and cℓ1 ̸= cℓ2 with the event
Kℓ2 = 2, where Kℓn denote the number of cluster at layer ℓ in a sample of n subjects.
Similarly,

ER =

(
n

2

)−1

E

[
n∑

i=1

n∑
j=i+1

1(c1i = c1j)1(c2i = c2j) +
n∑

i=1

n∑
j=i+1

1(c1i ̸= c1j)1(c2i ̸= c2j)

]
=P(c1i = c1j, c2i = c2j) + P(c1i ̸= c1j, c2i ̸= c2j)

=P(c11 = c2, s1 = s2) + P(c11 ̸= c2, s1 ̸= s2)

=P(K12 = 1, K22 = 1) + P(K12 = 2, K22 = 2).

A7 Proof of Theorem 3 and Corollary 1

Proof of Theorem 3 follows directly by combining equations (6) and (7) in Section 4. Corol-
lary 1 follows directly from Theorem 3 and Proposition 4.

A8 Proof of Theorem 4 and Corollary 2

Proof of Theorem 4. The marginal EPPF of the partition at layer 1 is a well-known result
(see, e.g., Green & Richardson 2001, McCullagh & Yang 2008, Miller & Harrison 2018,
Argiento & De Iorio 2022). Considering a specific partition ρ1 into K1n sets of the n obser-
vations, under eq. (8) in Section 5, we have that

p(ρ1) = V (n,K1n)

K1n∏
m=1

Γ(γ + nm)

Γ(γ)
,

where nm is the frequency of the mth cluster in order of appearance, i.e.,

nm =
n∑

i=1

1m(c
⋆
1i) with

K1n∑
m=1

nm = n and V (n,K1n) =
+∞∑
M=1

M(K1n)

(γK1n)(n)
pM(M)

where x(k) = Γ(x + k)/Γ(x) = x(x + 1) . . . (x + k − 1) and x(k) = Γ(x + 1)/Γ(x − k + 1) =
x(x−1) . . . (x−k+1), where Γ(x) denote the Gamma function in x and x(0) = 1 and x(0) = 1
by convention. While from equation (9), we have that

p(ρ2 | ρ1) = (1− ω)1(ρ1 = ρ2) + ω V (n,K2n)

K2n∏
s=1

Γ(α +
∑K1n

m=1 nms)

Γ(α)

where nms is the number of observations in the first-layer cluster m and second-layer cluster
s, when the clusters are in order of appearance.

Proof of Theorem 4 follows directly by combining the two partition functions above.
Corollary 2 follows directly from Theorem 4 and Proposition 4.
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for time-varying Pitman-Yor processes’, Journal of Machine Learning Research 18, 1–32.

Chandra, N. K., Canale, A. & Dunson, D. B. (2023), ‘Escaping the curse of dimensionality
in Bayesian model based clustering’, Journal of Machine Learning Research 24, 1–42.

Chen, M.-S., Lin, J.-Q., Li, X.-L., Liu, B.-Y., Wang, C.-D., Huang, D. & Lai, J.-H. (2022),
‘Representation learning in multi-view clustering: A literature review’, Data Science and
Engineering 7(3), 225–241.

Cremaschi, A., De Iorio, M., Kothandaraman, N., Yap, F., Tint, M. T. & Eriksson, J. (2024),
‘Joint modeling of association networks and longitudinal biomarkers: An application to
child obesity’, Statistics in Medicine 43(6), 1135–1152.

Dahl, D. B., Day, R. & Tsai, J. W. (2017), ‘Random partition distribution indexed by
pairwise information’, Journal of the American Statistical Association 112(518), 721–732.

24



Dalrymple, K. V., Thompson, J. M., Begum, S., Godfrey, K. M., Poston, L., Seed, P. T.,
McCowan, L. M., Wall, C., Shelling, A., North, R. et al. (2019), ‘Relationships of maternal
body mass index and plasma biomarkers with childhood body mass index and adiposity
at 6 years: The children of scope study’, Pediatric obesity 14(10), e12537.

Das, S., Niu, Y., Ni, Y., Mallick, B. K. & Pati, D. (2024), ‘Blocked Gibbs sampler for
hierarchical Dirichlet processes’, Journal of Computational and Graphical Statistics (in
press) .

De Blasi, P., Favaro, S., Lijoi, A., Mena, R. H., Prunster, I. & Ruggiero, M. (2015), ‘Are
Gibbs-type priors the most natural generalization of the Dirichlet process?’, IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 37(2), 212–229.
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