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Abstract

Slice sampling is a standard Monte Carlo technique for Dirichlet process (DP)–based models, widely

used in posterior simulation. However, formal assessments of the scalability of posterior slice sam-

plers have remained largely unexplored, primarily because the computational cost of a slice-sampling

iteration is random and potentially unbounded. In this work, we obtain high-probability bounds on

the computational complexity of DP slice samplers. Our main results show that, uniformly across

posterior cluster-growth regimes, the overhead induced by slice variables, relatively to the number

of clusters supported by the posterior, is OP(log n). As a consequence, even in worst-case config-

urations, superlinear blow-ups in per-iteration computational cost occur with vanishing probability.

Our analysis applies broadly to DP–based models without any likelihood-specific assumptions, still

providing complexity guarantees for posterior sampling on arbitrary datasets. These results establish

a theoretical foundation for assessing the practical scalability of slice sampling in DP-based models.

Keywords: Bayesian nonparametrics, Dirichlet process, Markov Chain Monte Carlo, Mixture models,

Slice sampling
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1 Introduction

Dirichlet process (DP)–based models are widely used to define flexible latent-component structures

in problems where the number of clusters, groups, or latent effects is unknown. Canonical examples

include mixture models for density estimation and clustering (Neal, 2000), stochastic block models for

network data (Kemp et al., 2006; Xu et al., 2006), regression and random-effects models (Wade and

Inácio, 2025), and species sampling problems (Balocchi et al., 2024). Beyond classical applications, DP-

based constructions continue to be an active modeling tool in novel machine learning methodologies

and applications, including domain adaptation (Ling et al., 2024), open-set classification (Snell et al.,

2024), covariate-informed clustering (Chakrabarti et al., 2025), and online anomaly detection (Mei

and Yan, 2026). In all these settings, inference involves exploring distributions over partitions whose

complexity grows with the sample size, offering substantial modeling flexibility while posing significant

computational challenges.

Markov chain Monte Carlo (MCMC) algorithms for DP-based models broadly fall into two main

classes: marginal and conditional methods. Marginal algorithms integrate out the random probability

measure, yielding exact inference for the induced partition structure, but typically rely on sequential,

one-at-a-time updates and nontrivial bookkeeping (Neal, 2000). While often effective for simple mix-

ture models and small sample sizes, these features become increasingly restrictive in large datasets

and in models with complex likelihoods, such as regression settings with covariate-dependent structure

(see, for instance, Dunson and Park, 2008) or relational data with non-exchangeable observations (see,

for instance, Cai et al., 2016; Zhou et al., 2024). Conditional algorithms instead retain the random

probability measure explicitly, commonly via the stick-breaking representation of the DP (Sethura-

man, 1994). This enables joint updates of latent variables and often leads to simpler implementations.

A widely used approach in this class is truncation of the stick-breaking representation at a fixed level,

resulting in blocked Gibbs samplers that are computationally efficient and, for typical likelihood spec-

ifications, perform joint updates (Ishwaran and James, 2001). However, truncation fundamentally

alters the model: unless the truncation level grows with the sample size, truncated algorithms intro-

duce a hard-threshold non-vanishing bias in the posterior distribution of the partition by assigning

zero probability to configurations with more clusters than the truncation allows. Although average-

case error bounds under the generative model are available (Ishwaran and James, 2002; Ishwaran and

Zarepour, 2002; Campbell et al., 2019; Li and Campbell, 2021), they do not provide guarantees for a

fixed observed dataset.

Slice sampling offers a principled alternative that avoids both marginalization and truncation

while preserving convergence to the exact posterior (Neal, 2003; Walker, 2007; Ge et al., 2015). By

introducing auxiliary slice variables, slice samplers restrict attention to a finite subset of components

at each MCMC iteration without imposing a fixed truncation level. Originally developed for DP

mixture models in Walker (2007), slice sampling extends directly to a broad class of DP-based models,

generalizations of DPs, and discrete random measures whenever a stick-breaking or weight-based

representation is available (Kalli et al., 2011; Zhu et al., 2020). In practice, slice samplers combine the

advantages of marginal and blocked methods: they target the true posterior distribution, typically
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allow joint updates, and require minimal bookkeeping.

Despite these advantages, slice samplers for the DP (as defined for instance in Walker, 2007; Kalli

et al., 2011; Ge et al., 2015) suffer from a fundamental theoretical limitation: their per-iteration

computational cost is unbounded. The number of components that must be instantiated at a given

iteration depends on the minimum slice variable, which can be arbitrarily close to zero with positive

probability, forcing the number of steps in the algorithm to be arbitrarily large. Formally, let (Xs)s≥1

denote the Markov chain induced by the slice sampler, C(Xs) the computational cost of iteration s

(in some unit of measure), and π the stationary distribution. For any finite threshold C <∞, define

the high-cost set AC := {x : C(x) > C}. At stationarity, the marginal probability Pπ(C(Xs) > C) =:

π(AC) is constant across iterations. Defining the hitting time τC = inf{s ≥ 1 : Xs ∈ AC}, since
π(AC) > 0, τC <∞ almost surely and

Pπ

(
∃ s ≤ T : C(Xs) > C

)
= Pπ(τC ≤ T ) −−−−→

T→∞
1.

Consequently, no deterministic upper bound on the computational cost of DP slice samplers exists.

This lack of formal complexity guarantees has made it difficult to assess the scalability of slice-based

inference.

In this work, we provide a formal analysis of the computational complexity of slice sampling

for a broad class of DP–based models. Rather than seeking deterministic worst-case bounds, which

are unattainable for slice samplers, we adopt a high-probability perspective and derive probabilistic

bounds on the number of components instantiated at each iteration. Our main results show that,

with arbitrarily high probability, the computational overhead introduced by the slice variables over

the number of clusters supported by the posterior grows at most logarithmically with the sample

size. Thus, even in unfavorable configurations, superlinear blow-ups in per-iteration cost occur with

vanishing probability. Our analysis applies broadly to general DP-based models without relying on

model-specific likelihood assumptions, while providing guarantees for any input data. By establishing

explicit high-probability complexity guarantees, this work provides a theoretical foundation for the

practical scalability of slice-based inference in DP-based models.

2 Preliminaries on Dirichlet process and slice samplers

We define a general class of models based on the DP as follows.

Definition 2.1 (DP–based generative model). Let zn = (z1, . . . , zn). We say that a random object

Y is generated from a DP–based model with sample size n if

Y | η,zn ∼ L(zn, η),

zi | G
iid∼ G, i ∈ [n],

G ∼ DP(α, P0),
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where L denotes a likelihood depending on the latent variables zn and parameters η, [n] = {1, . . . , n},
and DP(α, P0) is the law of a DP (Ferguson, 1973) with concentration parameter α > 0 and non-atomic

base measure P0.

For different choices of the likelihood L, Definition 2.1 encompasses a wide range of models, in-

cluding species sampling models, DP mixture models, DP stochastic block models, and related con-

structions.

A fundamental challenge in sampling (both a priori and a posteriori) from models in Definition 2.1

arises from the infinite-dimensional nature of the random probability measure G. Almost surely, G

admits the stick-breaking representation (Sethuraman, 1994)

G(dx) =
∞∑
k=1

πkδϕk
(dx), (1)

where the atoms (ϕk)k≥1 and the weights (πk)k≥1 are independent, with

ϕk
iid∼ P0, πk = Vk

k−1∏
ℓ=1

(1− Vℓ), Vk
iid∼ Beta(1, α).

This representation highlights the intrinsic infinite-dimensional structure of G, which is the main

source of both the flexibility of DP–based models and the computational challenges associated with

performing inference under them. The latent variables zn in Definition 2.1 naturally induce a random

partition of the index set [n]. Specifically, define an equivalence relation on [n] by declaring i ∼ j if

and only if zi = zj . The resulting equivalence classes correspond to clusters of latent variables sharing

the same value and define a partition ρn of [n]. Under the DP prior law on G, this random partition

is exchangeable, and its a priori distribution depends solely on α (Pitman, 1996). In the following,

we encode such a partition also with a cluster-label vector cn = (c1, . . . , cn), such that ci ∈ [n] and

ci = c means that i belong to cluster c (in some order, e.g., order of appearance) according to ρn.

Slice sampling for DP–based models introduces auxiliary variables to restrict inference to a finite,

data-dependent subset of latent components while preserving exactness of the target distribution (i.e.,

the posterior of ρn). The original formulation of slice sampling procedures to sample x from a distri-

bution with density f on X ⊂ Rm (Neal, 2003) introduces a latent slice variable u with joint density

p(x, u) = 1(0 < u < f(x)) that leaves the marginal distribution of x unchanged. Conditional on

u, sampling x reduces to sampling uniformly over the slice set {x : f(x) > u}. This construction

specializes naturally to discrete distributions (Walker, 2007; Kalli et al., 2011; Ge et al., 2015). In

particular, for a DP realization as in (1), conditionally on the latent slice variable u, a finite active set

is defined as A(u) = {k : πk > u}, and x is sampled uniformly from A(u). Figure 1 exemplifies the

distributions and the sampling mechanism that define a slice sampler for a discrete distribution G.

Algorithms 1 and 2 contain the slice sampling algorithms to sample respectively from the generative

model and from the posterior distribution for any model following Definition 2.1. In contrast with

the procedure proposed in Walker (2007) and Kalli et al. (2011), Algorithm 2 relies on the posterior

representation of the DP described in Pitman (1996) and employed in the improved slice sampler
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Sample u0 ∼ p(u)
Then x ∼ Uniform({ϕk : πk > u0})

Figure 1: Distributions involved in the slice sampler. Sampling x ∼ G(dx) is equivalent to sampling
u ∼ p(u) and x | u ∼ p(x | u). Left panel: A realization of a discrete probability measure G(dx) =∑∞

k=1 πkδϕk
(dx), represented as point masses located at atoms ϕk with weights πk. Sampling x ∼ G

corresponds to selecting one atom ϕk with probability πk. Center panel: The marginal distribution of
the auxiliary slice variable u, given by p(u) =

∑
k≥1 1(0 < u < πk), which is a decreasing step function

supported on (0,maxk πk). Right panel: Slice-sampling mechanism. First, a slice value u0 is drawn
from p(u) (horizontal dashed line). Conditionally on u0, the variable x is sampled uniformly from the
finite set {ϕk : πk > u0}, corresponding to atoms whose weights exceed the slice level.

of Ge et al. (2015), which allows to recover exchangeability of components, improving the mixing

of the slice sampler and leading to the update of the weights of the allocated components accord-

ing to (π1, . . . , πH , π⋆) ∼ Dirichlet(n1, . . . , nH , α). See Section 3 for a more detailed account of the

implications of this choice.

While all steps involve sampling from relatively simple distributions, the core of the algorithm

arguably lies in determining how many weights and atoms must be instantiated. To guarantee that the

set A(ui) can be identified exactly for each i, a sufficient number of components must be instantiated

so that all weights satisfying πk > ui are available. In Neal’s original slice sampler (Neal, 2003),

the slice set is located via generic expansion procedures that are well-suited to continuous targets but

possibly inefficient when G is discrete. The practical difficulty of controlling the number of instantiated

components under this approach for discrete distributions is evident, for instance, in the exact slice

sampler for hierarchical DP proposed by Amini et al. (2019), which relies on additional mechanisms

to manage the growth of the active set.

In this regard, Walker (2007) observes that a finite number K of components sufficient to allocate

the latent variables in z at each iteration is

K = min

{
k ∈ N :

∞∑
h=k+1

πh < umin

}
(2)

with umin := mini ui. By this definition, K is finite and any weight beyond the K-th component

necessarily satisfies πj ≤ ui for every i and j > K. These components can be safely ignored at

the current iteration for sampling z. To implement this approach, one may dynamically determine

the truncation level K during the sampling of the stick-breaking weights by checking the condition∑K
k=1 πk > 1 − umin and stopping as soon as it is met, as detailed in steps 16–22 of Algorithm 1

and steps 11–17 of Algotithm 2. In this way, the algorithm avoids accept-reject steps, retrospective

sampling (Papaspiliopoulos and Roberts, 2008), or any approximated truncated representation.
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Algorithm 1 Slice-Sampler a priori (generative mechanism)

Require: Hyperparameters α, P0, η, num. of iterations T

1: Initialize allocations ci for i ∈ [n]

2: for t = 1, . . . , T do

3: H ← number of clusters

4: Remap (ci)
n
i=1 into [H]n

5: π⋆ ← 1

6: for h = 1, . . . , H do

7: Sample ϕh ∼ P0

8: Sample vh ∼ Beta(1, α)

9: πh ← vh × π⋆

10: π⋆ ← π⋆ − πh

11: end for

12: for i = 1 to n do

13: Sample ui ∼ Uniform(0, πci)

14: end for

15: u∗ ← mini ui, K ← H

16: while π⋆ > u∗ do

17: K ← K + 1

18: Sample ϕK ∼ P0

19: Sample zK ∼ Beta(1, α)

20: πK ← zK × π⋆

21: π⋆ ← π⋆ − πK

22: end while

23: for i = 1 to n do

24: Ai ← { k ∈ [K] : πk > ui}
25: Sample ci ∼ Uniform

(
Ai

)
26: zi ← ϕci

27: end for

28: Sample Y ∼ L(zn, η)

29: end for

However, umin can be arbitrarily close to zero with positive probability at each iteration, and

therefore, the condition
K∑
j=1

πj > 1− umin

may force K to be arbitrarily large, so that the sampler must update an unbounded number of
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Algorithm 2 Slice-Sampler a posteriori

Require: Hyperparameters α, P0, η, num. of iterations T

1: Initialize allocations ci for i ∈ [n]

2: for t = 1, . . . , T do

3: H ← number of clusters

4: Remap (ci)
n
i=1 into an element in [H]n

5: nh ←
∑

i 1(ci = h)

6: (π1, . . . , πH , π
⋆) ∼ Dirichlet(n1, . . . , nH , α)

7: for h = 1 to H do

8: Sample ϕh

9: end for

10: for i = 1 to n do

11: Sample ui ∼ Uniform(0, πci)

12: end for

13: u∗ ← mini ui, K ← H

14: while π⋆ > u∗ do

15: K ← K + 1

16: Sample ϕK ∼ P0

17: Sample vK ∼ Beta(1, α)

18: πK ← vK × π⋆

19: π⋆ ← π⋆ − πK

20: end while

21: for i = 1 to n do

22: Ai ← { k ∈ [K] : πk > ui}
23: Sample ci ∼ Cat

(
wk ∝ Lik(Y ; zi = ϕk), k ∈ Ai

)⋆
24: zi ← ϕci

25: end for

26: end for

⋆ Lik(Y ; zi = ϕk) denotes the likelihood evaluated at zi = ϕk and current state of the other parameters. Typically, this step

does not require full evaluation of the likelihood (see Section 4).

components (an effect that becomes more pronounced as the tails of the Dirichlet process become

heavier). Therefore, it is important to assess the probability of actually exceeding a specific computa-

tional threshold at each iteration and how such probability varies with the sample size n growing. In

Section 3, we derive a posteriori high-probability bounds on computational cost, valid in any cluster-

growth regimes, providing guarantees that hold a posteriori for any dataset. All the proofs are given

in Appendix A.
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3 High-probability bounds for slice samplers complexity

The computational cost of Algorithm 2 depends on the truncation level K instantiated at each itera-

tion. In particular, computational complexity is driven by the final for-loop updating the allocations.

It requires, for each observation i ∈ [n], evaluating the likelihood for all components k ∈ Ai ⊆ [K].

In the worst case, this step entails up to n × K likelihood evaluations per iteration. Consequently,

while the slice sampler avoids fixed truncation, its practical scalability hinges on probabilistic control

of the magnitude of K, which directly governs the dominant per-iteration computational cost. In

the following, we show that the performance of the slice sampler for DP–based models is safeguarded

by high-probability bounds. To derive the result the main quantity under study is the dynamically-

determined truncation level K and its behaviour as n → ∞, therefore from now on we replace the

notation K with Kn to highlight dependence on the sample size.

The truncation level Kn, as defined by Walker (2007) and reported in equation (2), is the smallest

index such that the remaining stick-breaking mass falls below the minimum slice variable umin. When

the stick-breaking weights entering this definition are sampled from the Dirichlet process prior and

one conditions on a fixed value of umin, the distribution of Kn admits an explicit characterization: by

a classical result of Muliere and Tardella (1998), one has Kn−1 | umin ∼ Poisson(α log(1/umin)). This

result serves as a useful reference point for understanding how the slice level controls the number of

instantiated components under prior sampling. However, its scope is inherently limited: it is based

on prior sampling for the weights, does not account for the configuration of the allocated components,

and, crucially, does not describe how umin itself behaves as the sample size grows.

In practical implementations of slice-based Gibbs samplers, both a priori and a posteriori, the

truncation level Kn is subject to an additional structural constraint: it must always be at least as

large as the maximum label appearing in the current cluster allocation. Otherwise, the slice variables

ui cannot be sampled (see line 13 of Algorithm 1 and line 8 of Algorithm 2). The improved slice

sampler of Ge et al. (2015) exploits the exchangeability of the posterior representation of the DP

described in Pitman (1996) to enforce this constraint optimally, by remapping cluster labels so that

the maximum label coincides with the number of occupied clusters. This relabeling step leads to a

more efficient Gibbs sampler without altering the target posterior distribution. Differently from an

approach relying solely on a fixed stick-breaking ordering, the improved slice sampler of Ge et al.

(2015) avoids the forced instantiation and sampling of weights corresponding to empty components

before entering the while-loop. Denoting by Hn the number of clusters at the current iteration, the

effective truncation level used by the algorithm can therefore be written as

Kn = min

{
k ≥ Hn :

∞∑
h=k+1

πh < umin

}
. (3)

In posterior inference, while the formal definition of Kn in (3) remains unchanged, the probabilistic

structure governing it differs substantially from the prior-based setting. Both the weights and the slice

variables are sampled from their posterior distributions, conditionally on the currently visited partition

configuration, which itself depends on the observed data. As a consequence, the tail mass appearing
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in the definition of Kn is governed by posterior rather than prior-distributed stick-breaking factors,

and the minimum slice variable umin has a data-dependent distribution.

Understanding the computational complexity of posterior slice sampling therefore requires con-

trolling the joint behavior of the sampled weights and the minimum slice variable umin as the sample

size increases, without relying on prior laws or conditioning on a fixed value of umin. We start investi-

gating the law of the minimum slicing variable conditioning on the partition configuration visited by

the chain and marginalizing the weights. The next Proposition highlights how merging two clusters

always reduces the conditional probability of observing minimum slicing variables below any given

threshold.

Proposition 3.1 (Merging two clusters increases the survival probability of umin). For any ρn parti-

tion of [n] with cluster sizes (n1, . . . , nH),
∑H

h=1 nh = n, let (π1, . . . , πH , π⋆) | ρn ∼ Dirichlet(n1, . . . , nH , α),

let ui | πci ∼ Uniform(0, πci) independently, and umin = min1≤i≤n ui.

If ρ
(r⊕s)
n is the partition obtained from ρn by merging two (distinct) clusters r and s into a single

cluster of size nr + ns and leaving the other clusters unchanged, then, for any x ∈ (0, 1)

P
(
umin ≤ x

∣∣∣ ρ(r⊕s)
n

)
≤ P (umin ≤ x | ρn) .

As a direct consequence of Proposition 3.1, we have that the partition with n clusters of size 1

induces the lowest survival probability for umin.

Corollary 3.2 (Singleton partition yields the lowest survival probability of umin). Let ρsingn denote

the singleton partition of [n], i.e., the partition with n clusters of size 1. Then, for every x ∈ (0, 1)

and every partition ρn,

P
(
umin > x

∣∣ ρsingn

)
≤ P (umin > x | ρn) .

Once it is formally established that the singleton partition represents the worst-case scenario in

terms of controlling the mass around zero of the minimum slice variable, we can state our main result

on the tail of Kn, which holds uniformly over all partitions visited by the posterior algorithm.

Theorem 3.3 (High-probability bound on dynamic truncation level). Let Kn and Hn be respectively

the truncation level in (3) and the number of occupied clusters at a given iteration of Algorithm 2

when run for n input data. Then, for every δ ∈ (0, 1) there exist constants B
(1)
α , B

(2)
α (independent of

δ and n) such that for any n ≥ 2

P(Kn −Hn ≤ Cδ log n | ρn
)
≥ 1− δ , ∀ρn

with Cδ = B
(1)
α +B

(2)
α log(1/δ), and B

(1)
α , B

(2)
α ≍ α.

In particular, Kn −Hn = OP(logn) and, in the worst-case scenario of Hn = O(n), Kn = OP(n).

The strength of providing: (i) an explicit constant Cδ with logarithmic growth in δ and (ii) unifor-

mity in n for the high-probability bound is exemplified in the following Corollary, which establishes

exponential tails and, consequently, uniformly bounded moments for the slice overhead.
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Corollary 3.4. Let (Kn, Hn) be defined as in Theorem 3.3. There exist constants B
(1)
α , B

(2)
α > 0 such

that for all n ≥ 2 and all t ≥ 0,

P
(
Kn −Hn

log n
> B(1)

α +B(2)
α t

∣∣∣ ρn) ≤ e−t , ∀ρn.

In particular, for any p ≥ 1, there exists a constant Cp,α > 0 such that

sup
n≥2

E
[(

Kn −Hn

log n

)p ∣∣∣ ρn] ≤ Cp,α , ∀ρn.

Moreover, the uniform-in-ρn nature of the high-probability bound allows for further derivation of

an almost-sure bound under infinite-data coupling, implying that super-logarithmic slice overheads

cannot occur infinitely often as the sample size grows.

Corollary 3.5. Let (Kn, Hn) be defined as in Theorem 3.3. There exists a constant Dα > 0 such that

P
(
lim sup
n→∞

{
Kn −Hn > Dα log

1

δn
log n

})
= 0

for any summable sequence (δn)n≥1 ⊂ (0, 1/2).

4 Comparison with alternative algorithms for mixture

models

To translate the results of the previous section into explicit high-probability statements on the scal-

ability of slice sampling for DP models, we focus, for concreteness, on DP mixtures of univariate

Normals with fixed variance. Specifically, we consider models of the form

Yi | zi
ind∼ N (zi, σ

2), zi | G
iid∼ G, G ∼ DP(α, P0),

for i ∈ [n], where N (µ, σ2) denotes a Normal distribution with mean µ and variance σ2. This setting

serves as a representative working example in which the cost of likelihood evaluation at step 23 of

Algorithm 2 is constant per component. However, the arguments developed below extend directly

to the broader class of DP–based models described in Definition 2.1, with the understanding that

model-specific likelihoods may introduce different per-evaluation computational costs as a function

of n. Table 1 summarizes the computational scalability and qualitative properties of several MCMC

posterior sampling strategies for DP mixture models, highlighting fundamental trade-offs between

exactness, scalability, and implementation complexity.

Marginal samplers based on the Chinese restaurant process (CRP) representation target the exact

posterior distribution over partitions and avoid truncation bias. Their dominant per-iteration cost

scales as n×Hn, corresponding to the reassignment of each observation across all currently occupied

clusters. While this scaling captures the leading-order behavior, the associated constant depends on

implementation details. In particular, when cluster-specific parameters are analytically integrated out
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CRP BGS–L BGS–n Slice

Scalability by posterior cluster growth

Hn = O(n) O(n2) Θ(n) Θ(n2) OP(n
2)

Hn = O(log n) O(n log n) Θ(n) Θ(n2) OP(n log n)

Hn = O(1) O(n) Θ(n) Θ(n2) OP(n log n)

Exact posterior partition target ✓ ✗ ✗ ✓

No hard-threshold bias ✓ ✗ ✓ ✓

No bookkeeping ✗ ✓ ✓ ✓

Joint Updates ✗ ✓ ✓ ✓

Table 1: Comparison of posterior sampling algorithms for DP mixture models. The table reports
per-iteration computational complexity as a function of the sample size n and the posterior number
of clusters Hn, together with key qualitative properties of each method. Since the posterior number
of clusters Hn can grow at most linearly in n, the first row represents the worst-case cluster growth
regime and thus provides worst-case computational guarantees.

from the full-conditionals of the latent cluster-label vector cn, each reassignment requires evaluating

a predictive likelihood that typically involves an integral with respect to the base measure of the DP.

Moreover, bookkeeping operations needed to maintain sufficient statistics and cluster counts, while

not altering the n × Hn scaling, can substantially increase the constant factor and limit practical

scalability to large datasets, while assignments of observations to different clusters, i.e., sampling the

elements in cn, can only be performed one-at-a-time.

Blocked Gibbs samplers with fixed truncation levels (BGS–L) enable simpler implementations and

joint updates, i.e., the assignments to different clusters can be performed in parallel, but at the cost of

introducing a hard truncation. This is a model misspecification, not just an approximation error, and

leads to a non-vanishing bias. In this regard, Ishwaran and James (2002) establishes in their Theorem

1 and Corollary 1 that the marginal density error of a L-truncated approximation of the DP mixture

of Normals is exponentially accurate for the posterior of the partition. Formally, denote with πL the

posterior of the truncated model and with π∞ and m∞ the posterior and the marginal likelihood for

the DP mixture of Normals. Ishwaran and James (2002) proves that∫
Rn

∑
ρn

|πL(ρn | Y )− π∞(ρn | Y ) | m∞(Y )dY = O(4n e−(L−1)/α).

While this result gives a useful average-case rate under the prior predictive, it clearly does not guar-

antee small error for any fixed dataset (and, in particular, for the worst-case scenario) since large

discrepancies may occur on regions of the data space with small m∞-mass. The truncated model

simply cannot represent more than L clusters: πL(ρn) = 0 on all partitions with more than L clusters,

yet these partitions may have substantial π∞-mass. Since the truncation level is fixed by design, their

per-iteration cost is deterministic, and scales as nL. One way to avoid the systematic underestimation

of the probability of partitions with Hn > L in truncated blocked algorithms is to let the truncation
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level to be exactly n (BGS-n). This strategy, however, leads to a Θ(n2) per-iteration computational

cost in all scenarios, while the chain keeps not targeting the exact posterior.

On the other hand, the scalability of slice-based samplers is effectively safeguarded by our high-

probability bound: the excess number of sampled components beyond those occupied by the data grows

at most logarithmically with high probability. Consequently, as summarized in Table 1, slice samplers

retain exactness, easy or no bookkeeping, and joint updates while achieving favorable scalability in

high-probability, especially in regimes where the number of clusters grows slowly with the sample size.

5 Numerical experiments

First, in this section, we present a numerical study aimed at empirically comparing the computational

performance of six posterior sampling algorithms for DP mixtures of univariate Normals. The methods

considered are: the slice sampler described in Algorithm 2; a variant of the slice sampler in which the

atoms ϕk are analytically marginalized out; two blocked Gibbs samplers based on finite dimensional

Dirichlet distributions with truncation levels L = 10 and L = n, respectively; and two marginal

samplers based on the CRP predictive scheme, one sampling the cluster allocations cn conditionally

on the atoms ϕk and one integrating the atoms out analytically.

Data are generated from three equally sized clusters, with observations in each cluster drawn inde-

pendently from a Normal distribution with unit variance and means equal to−3, 0, and 3. Experiments

are repeated for sample sizes n ∈ {150, 300, 600, 1500, 3000, 7500, 12000}. For all methods, the base

measure of the DP is taken to be the standard Normal distribution, and the concentration parameter

α is assigned a Gamma(3, 3 log n) prior, and, thus E[α] = 1/ log(n) a priori. For each algorithm and

sample size, we run 10,000 MCMC iterations. All chains are initialized using a k-means clustering so-

lution with five clusters, obtained via the R function kmeans. All algorithms are implemented in R and

are made available at github.com/beatricefranzolini/DPalg. Figures 2 and 3 report, respectively,

the wall-clock time required for 1,000 iterations (in seconds) and the effective sample size (ESS) per

second as functions of the input size. For some methods, results at larger sample sizes are unavailable

due to computational constraints; we declare an algorithm to be infeasible at a given sample size if it

requires more than one second to complete the first ten iterations on a laptop with 13th Gen Intel(R)

Core(TM) i7-1370P.

Marginal CRP-based samplers exhibit the steepest growth in computational time, becoming in-

feasible already at moderate sample sizes, while blocked Gibbs samplers display predictable scaling

behavior. In contrast, slice-based samplers achieve a more favorable trade-off: although their per-

iteration cost increases with n, the growth is substantially slower than that of marginal samplers and

comparable to that of blocked Gibbs samplers with L = 10 components, which, however, do not target

the correct posterior. This behavior is also reflected in high ESS per second. Marginalizing the atoms

within the slice sampler appears to increase the computational time per iteration but does not improve

mixing sufficiently, particularly for small datasets, leading to lower ESS per second for small sample

sizes compared to the original version. Overall, these empirical results align with the high-probability
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Figure 2: Wall-clock time per 1000 iterations in seconds computed as average over 10,000 iterations
(including burn-in) as a function of input size (x-axis on log scale). Codes are in R and run on a laptop
with 13th Gen Intel(R) Core(TM) i7-1370P.
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Figure 3: ESS (w.r.t. to the log likelihood) per second computed as average over the last 5,000 iterations
(excluding a burn-in of 5,000) as a function of input size (x-axis on log scale). Codes are in R and run
on a laptop with 13th Gen Intel(R) Core(TM) i7-1370P.

complexity bounds established in Section 3, supporting the scalability of slice-based approaches for

posterior inference in DP–based models.

To conclude, we empirically assess the limitations of blocked Gibbs samplers compared to slice

samplers with a second numerical experiment. Here, the synthetic data-generating mechanism follows

a perturbed Zipf model, which entails a steadily increasing cluster-growth regime, up to elevated

sample sizes, while still having finite support over the cluster labels. Specifically, for each sample

size n ∈ {150, 300, 600, 1500, 3000}, latent cluster labels are generated independently from a discrete

distribution on {1, . . . , 500}, with the probability of cluster c proportional to c−2. This induces a heavy-

tailed cluster-size distribution with a growing number of small but non-negligible clusters, providing a

challenging setting for truncated algorithms. Conditional on the latent labels, observations are drawn

independently from Normal distributions with unit variance and cluster-specific means proportional

to the label index. With the exception of the data-generating process, all other settings coincide with
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Figure 4: Boxplots of the Rand index between the true clustering and the partitions visited by the
MCMC algorithms, for each algorithm and sample size. Results are computed after a burn-in period
of 5,000 iterations.

those of the previous numerical study.

The results are reported in Figure 4. As expected, the inferential performance of the blocked

Gibbs sampler deteriorates rapidly as the sample size increases, with the chain exhibiting very limited

mixing and remaining almost constant on a single partition. In contrast, the slice sampler consistently

achieves Rand index values around 0.9 across all sample sizes, indicating excellent recovery of the true

clustering even in this challenging scenario.

Additional results, regarding posterior inference performances and computational aspects for both

numerical studies, can be found in Appendix B.

6 Conclusion

Slice samplers provide an appealing strategy for posterior simulation in DP–based models, combining

joint updates, minimal bookkeeping, and the avoidance of fixed truncation. At the same time, their

practical scalability has long remained theoretically unclear due to the random and unbounded nature

of their per-iteration computational cost. This work addresses this gap by providing the first high-

probability complexity guarantees for DP slice samplers that hold a posteriori, uniformly over all

partitions visited by the Markov chain and for any observed dataset. Our main results establish that

the dynamically instantiated truncation level exceeds the number of occupied clusters by at most a
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logarithmic factor in the sample size, with arbitrarily high probability. As a consequence, even in

worst-case cluster-growth regimes, super-linear increases in per-iteration cost occur with vanishing

probability. These guarantees formalize and explain the favorable empirical scalability of slice-based

algorithms observed in practice, while preserving exact targeting of the posterior distribution over

partitions.

An additional feature of our results is that all constants appearing in the high-probability bounds

are explicit in the DP concentration parameter α. This opens the door to extensions to adaptive and

data-driven DP formulations, such as those considered by Tsiligkaridis and Forsythe (2015) and Ohn

and Lin (2023), where α is learned from the data or evolves over time. More broadly, the techniques

developed here suggest a promising avenue for extending high-probability complexity guarantees to

slice-based algorithms for general completely random measures, Pitman–Yor processes, and structured

DP-based models, including hierarchical Dirichlet processes, sticky constructions, and temporally

evolving partition models. In many of these settings, the conditional formulation underlying slice

samplers leads to substantially simpler full conditional distributions than those arising in marginal

approaches, hence the computational gains relative to alternative inference schemes are expected to

be even more pronounced.
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A Proofs

Proof of Proposition 3.1. Fix h ∈ [H] and let Ih := {i : ci = h} with |Ih| = nh. Conditionally on πh,

the slice variables (ui)i∈Ih
iid∼ Uniform(0, πh). Hence

P
(
min
i∈Ih

ui > x
∣∣∣πh) = P

⋂
i∈Ih

{ui > x}
∣∣∣πh
 =

∏
i∈Ih

P (ui > x | πh) .

For u ∼ Uniform(0, πh) and x ∈ (0, 1),

P (u > x | πh) = max

(
1− x

πh
, 0

)
,

so that

P
(
min
i∈Ih

ui > x
∣∣∣πh) =

[
max

(
1− x

πh
, 0

)]nh

= max

((
1− x

πh

)nh

, 0

)
.

Now, consider the survival probability conditional on weights. Grouping indices by cluster, we have

P (umin > x | π1:H , ρn) =

H∏
h=1

P
(
min
i:ci=h

ui > x
∣∣∣πh) =

H∏
h=1

max
((

1− x
πh

)nh

, 0
)
,

Denoting (·)+ = max(·, 0) and taking expectation w.r.t. the Dirichlet posterior law for the weights,

i.e., (π1, . . . , πHn , π
⋆) | ρn ∼ Dirichlet(n1, . . . , nH , α), yields

P (umin > x | ρn) = E

[
H∏

h=1

(
1− x

πh

)nh

+

∣∣∣ ρn

]
. (4)

Now merge clusters r and s. Let π̃ := πr + πs and S := πr/π̃. By the aggregation and neutrality

properties of the Dirichlet distribution,

(π̃, π−rs, π
⋆) | ρn ∼ Dirichlet(nr + ns, (nh)h̸=r,s, α), (5)

S | π̃, ρn ∼ Beta(nr, ns), and S is independent of (π̃, π−rs, π
⋆). Note that the distribution in (5)

coincides with the Dirichlet posterior law for the weights when conditioning on the partition ρ
(r⊕s)
n .

Now, conditioning on (π̃, π−rs, π
⋆) and integrating S,

P(umin > x | ρn) = E

 ∏
h̸=r,s

(
1− x

πh

)nh

+
E
[(

1− x
Sπ̃

)nr

+

(
1− x

(1−S)π̃

)ns

+

∣∣∣ π̃, ρn] ∣∣∣ ρn
 , (6)

where the outer expectation is w.r.t. (π̃, π−rs, π
⋆).

Under the merged partition ρ
(r⊕s)
n , the two clusters are replaced by a single cluster of size nr + ns

with weight π̃, while all other weights have the same joint law as in the aggregated representation

above, and, in particular, weights follow the distribution in (5). Hence, analogously to (4),

P
(
umin > x | ρ(r⊕s)

n

)
= E

{ ∏
h̸=r,s

(
1− x

πh

)nh

+

}(
1− x

π̃

)nr+ns

+

∣∣∣ ρ(r⊕s)
n

 . (7)
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It therefore suffices to show that

E
[(

1− x
Sπ̃

)nr

+

(
1− x

(1−S)π̃

)ns

+

∣∣∣ π̃, ρn] ≤ (
1− x

π̃

)nr+ns

+
a.s. (8)

Indeed, plugging (8) into (6) and comparing with (7) yields P (umin > x | ρn) ≤ P
(
umin > x

∣∣∣ ρ(r⊕s)
n

)
,

which is equivalent to the desired CDF inequality.

To verify (8), note first that if π̃ ≤ x then both sides are zero. Assume π̃ > x and define

y := x/π̃ ∈ (0, 1). The left-hand side integrand vanishes unless jointly S > y and 1 − S > y, i.e.,

y ≤ S ≤ 1− y. On this event, y
S ≥ y and y

1−S ≥ y, which implies

1− y

S
≤ 1− y and 1− y

1− S
≤ 1− y.

Therefore, for all S ∈ (y, 1− y),

F (S) =
(
1− y

S

)nr
(
1− y

(1−S)

)ns

≤ (1− y)nr(1− y)ns = (1− y)nr+ns ,

and since F (S) = 0 for S /∈ (y, 1 − y), the bound holds for all S ∈ (0, 1). Taking expectation with

respect to S ∼ Beta(nr, ns) yields

E
[
F (S)

]
≤ (1− y)nr+ns =

(
1− x

π̃

)nr+ns

.

which is exactly (8).

Proof of Corollary 3.2. Fix a partition ρn with H clusters. Starting from the singleton partition ρsingn ,

one can obtain ρn by a finite sequence of merges of two clusters: at each step, merge two blocks until

exactly the blocks of ρn are formed. Denote the resulting sequence of partitions by

ρ(0)n = ρsingn , ρ(1)n , . . . , ρ(m)
n = ρn.

By Proposition 3.1, each merge weakly increases the survival probability of umin, i.e., for every j =

1, . . . ,m,

P
(
umin > x

∣∣∣ ρ(j−1)
n

)
≤ P

(
umin > x

∣∣∣ ρ(j)n

)
.

Chaining these inequalities yields

P
(
umin > x

∣∣ ρsingn

)
≤ P (umin > x | ρn) .

Proof of Theorem 3.3. Let ρn be the random partition of [n] induced by (z1, . . . , zn) at a given iteration

of Algorithm 2, and let Hn denote the number of clusters. Let (c1, . . . , cn) ∈ [n]n be any cluster-label

vector compatible with ρn. Conditionally on ρn, draw weights (πh)h≥1 from the Dirichlet process

posterior (as detailed in steps 4–6 of Algorithm 2) and let

ui ∼ Uniform(0, π ci), umin = min
1≤i≤n

ui.

19



For each integer k ≥ 1, define

Rk =
∑

h≥k+1

πh, and Kn = min{ k ≥ Hn : Rk < umin}.

Recalling the a posteriori representation of allocated components, i.e.,

(π1, . . . , πH , π⋆) ∼ Dirichlet(n1, . . . , nH , α)

, with α being the concentration parameter, and the stick-breaking construction of the weights (πh)h≥1,

for any k ≥ Hn we have

Rk = π⋆ ×
k∏

i=Hn+1

(1− Vi)

where we use the convention that
∏h

i=h+1 yi := 1 for any h and (yi)i. The distribution of each

stick-breaking weight Vi, for i > Hn, conditionally on ρn, is Vi ∼ Beta(1, α). So that

Kn = min

{
k ≥ Hn : π⋆ ×

k∏
i=Hn+1

(1− Vi) < umin

}
.

Let us define for any x ∈ (0, 1)

Kn(x) := min

{
k > Hn : π⋆ ×

k∏
i=Hn+1

(1− Vi) < x

}
(9)

and

K0
n(x) := min

{
k > Hn :

k∏
i=Hn+1

(1− Vi) < x

}
(10)

where, since the products are decreasing in k, both the sets in (9) and (10) are non-empty for any x.

Similarly, since π⋆ < 1 a.s., we have{
k > Hn : π⋆ ×

k∏
i=Hn+1

(1− Vi) < x

}
⊇

{
k > Hn :

k∏
i=Hn+1

(1− Vi) < x

}

for any x ∈ (0, 1), taking the minimum

Kn(x) ≤ K0
n(x) a.s. ∀x ∈ (0, 1). (11)

It is easy to see that umin > x implies{
k > Hn : π⋆ ×

k∏
i=Hn+1

(1− Vi) < x

}
⊆

{
k ≥ Hn : π⋆ ×

k∏
i=Hn+1

(1− Vi) < umin

}
.

Hence, using again a minimum argument, Kn(x) ≥ Kn. By negation then, Kn(x) < Kn implies

umin ≤ x, which means

P (Kn(x) < Kn | ρn) ≤ P (umin ≤ x | ρn) (12)
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for any x ∈ (0, 1).

Now, for any non-negative quantity An,δ, possibly dependent on n and δ, we have

P (Kn > An,δ | ρn) ≤ P
(
K0

n(x) > An,δ | ρn
)
+ P

(
Kn > K0

n(x) | ρn
)

≤ P
(
K0

n(x) ≥ An,δ | ρn
)
+ P (Kn > Kn(x) | ρn)

≤ P
(
K0

n(x) ≥ An,δ | ρn
)
+ P (umin ≤ x | ρn)

where we used in the first inequality the law of total probability disintegrating with respect to the

event {K0
n(x) ≥ Kn} and its complement, in the second (11) and in the third (12). Hence, choosing

An,δ = Hn + Cδ log n, we just need to find x = x(n, δ) such that, for any n ≥ 2

P
(
K0

n(x(n, δ)) ≥ Hn + Cδ log n | ρn
)
≤ δ

2
and P (umin ≤ x(n, δ) | ρn) ≤

δ

2
. (13)

For the first inequality, we notice, as in Muliere and Tardella (1998) and Walker (2007), that,

conditionally on ρn, we have − log(1− Vi)
iid∼ exp(α) for i > Hn, which makes

∑k
i=Hn+1− log(1− Vi)

the arrival times of a homogeneous Poisson process of rate α. Hence, by its definition in (10), we have

K0
n(x)−Hn − 1 | ρn ∼ Poisson (α log(1/x)) (14)

for any x ∈ (0, 1). We leverage the following Chernoff-style result for Poisson random variables: if

Z ∼ Poisson(λ) then

P (Z ≥ λ+ t) ≤ exp

{
− t2

2(λ+ t/3)

}
(15)

for any t > 0. This can be easily proved, e.g. by applying the Bernstein inequality in Equation 2.10 of

Boucheron et al. (2013) to a sequence of n independent Bernoulli(λ/n) and then passing to the limit.

Hence, by (14) and (15), for any t > 0 and any x ∈ (0, 1), we have

P
(
K0

n(x) ≥ Hn + 1 + α log(1/x) + t | ρn
)
≤ exp

{
− t2

2(α log(1/x) + t/3)

}
. (16)

We note that the bound is independent of ρn.

The r.h.s. of (16) is bounded by δ/2 if and only if

t2 − 2

3
log(2/δ)t− 2 log(2/δ)α log(1/x) ≥ 0 (17)

for any x ∈ (0, 1). The positive root of (17) is

t+ =
1

3
log(2/δ) +

1

2

√
4

9
log2(2/δ) + 8α log(2/δ) log(1/x)

≤2

3
log(2/δ) +

√
2 log(2/δ)α log(1/x) ≤ log(2/δ) +

3α

2
log(1/x)

(18)

where we used that
√
y1 + y2 ≤

√
y1 +

√
y2 and that

√
2y1y2 ≤ ηy1/2 + y2/η for any η > 0, and in

particular, we set η = 2/3. Since the l.h.s of (17) is increasing around t+, from (16) and (18) we have

that

P
(
K0

n(x)−Hn ≥ 1 + 3α log(1/x) + log(2/δ) | ρn
)
≤ δ

2
(19)
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for any x ∈ (0, 1).

Now, for the second inequality in (13), we note that by Proposition 3.1 and Corollary 3.2

P (umin ≤ x | ρn) ≤ P
(
umin ≤ x | ρsing

)
(20)

where ρsing is the singleton partition and (csing1 , . . . , csingn ) a correspondent cluster-label vector, i.e.,

csingi ̸= csingj for any i ̸= j ∈ [n]. Then, we use the following minimum argument and union bound

P
(
umin ≤ x | ρsing

)
≤ P

(
n⋃

i=1

{ui ≤ x}
∣∣∣ ρsing) ≤ n∑

i=1

P
(
ui ≤ x | ρsing

)
. (21)

Focusing on each summand on the r.h.s. of (21), let wi := π
csingi

, i.e., the weight associated to the

allocation of the i-th observation, so that the slice variable usingi , conditionally on wi, is uniform on

(0, wi). In particular, for any x ∈ (0, 1) we have

P
(
ui ≤ x | wi, ρ

sing
)
= min

(
1,

x

wi

)
.

Moreover, (
w1, . . . , wn, 1−

n∑
i=1

wi

) ∣∣∣ ρsing ∼ Dirichlet(1, . . . , 1, α)

and, in particular, wi | ρsing ∼ Beta(1, α+ n− 1). Thus, for any x ∈ (0, 1)

P
(
ui ≤ x | ρsing

)
= (α+ n− 1)

[∫ x

0
(1− w)α+n−2 dw + x

∫ 1

x

(1− w)α+n−2

w
dw

]
≤ (α+ n− 1)x [1 + log(1/x))]

(22)

where we use that 1− w < 1. Combining (20), (21) and (22) yields

P (umin ≤ x | ρn) ≤ n (α+ n− 1)x [1 + log (1/x)] . (23)

We note that the bound is again independent of ρn.

Therefore, we need to choose x = x(n, δ) ∈ (0, 1) such that, for any n ≥ N , the lower-bound in the

probability in (19) is upper-bounded by Cδ logn, and the r.h.s. of (23) is upper-bounded by δ/2. We

prove that

x(n, δ) :=
δ

4n(α+ n− 1) log(2n(α+ n− 1)e/δ)
(24)

fulfills both the requirements for n ≥ 2. Let r = δ
2n(n+α−1) . For any n ≥ 2, we have 0 < r < 1, since

2n(α+ n− 1) > 1, hence x(n, δ) < 1. Moreover

x(n, δ)

[
1 + log

1

x(n, δ)

]
=

r

2 log(e/r)

[
1 + log

(
2 log(e/r)

r

)]
=

r

2 log(e/r)
[log(e/r) + log (2 log(e/r))] ≤ r

(25)
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since log(2y) ≤ y for any y > 0. Combining (23) and (25) we have that x(n, δ) in (24) satisfies the

second bound in (13). Moreover, first observe that

log
1

x(n, δ)
= log(4/δ) + logn+ log(α+ n− 1) + log log

(2n(α+ n− 1)e

δ

)
. (26)

Since α+ n− 1 ≤ (1 + α)n for n ≥ 2, we have log(α+ n− 1) ≤ log(1 + α) + logn, hence

log log
(2n(α+ n− 1)e

δ

)
≤ log

(2n(α+ n− 1)e

δ

)
≤ 2 log n+ log

2e(1 + α)

δ
. (27)

Combining (26) and (27) yields, for all n ≥ 2,

log
1

f(n, δ)
≤ 4 log n+ log

(8e(1 + α)2

δ2

)
.

Therefore

1 + 3α log
1

x(n, δ)
+ log

2

δ
≤ 12α log n+

(
1 + 3α log

(8e(1 + α)2

δ2

)
+ log

2

δ

)
≤ Cδ log n (28)

where

Cδ = B(1)
α +B(2)

α log
1

δ
with B(2)

α =
6α+ 1

log 2
, B(1)

α = 12α+
1 + 3α log

(
8e(1 + α)2

)
+ log 2

log 2
(29)

and we used log 2 ≤ log n to collect all the terms in one constant.

Going back to (19), from (28),we get

P
(
K0

n (x(n, δ))−Hn > Cδ log n | ρn
)
≤ P

(
K0

n(x(n, δ))−Hn > 1 + 3α log
1

x(n, δ)
+ log

2

δ

∣∣∣ ρn) ≤ δ

2

which is the first bound in (13).

To sum up, we proved that, uniformly over any partition ρn visited by the posterior algorithm at

any considered iteration, for any δ ∈ (0, 1) there exists Cδ such that for any n ≥ 2

P (Kn −Hn > Cδ log n | ρn) ≤ δ

where we give an explicit expression for the constant Cδ in (29). In particular, we have Kn −Hn =

OP(logn) and in the worst-case scenario of Hn = O(n), Kn = OP(n).

Proof of Corollary 3.4. Let Xn := Kn−Hn
logn . In the bound obtained in Theorem 3.3 one can simply

take δ = e−t for t > 0 and obtain, for any n ≥ 2,

P
(
Xn > B(1)

α +B(2)
α t

∣∣∣ ρn) ≤ e−t (30)

for any visited partition ρn, i.e., an exponential bound on the tails of the normalized overhead, uniform

in n and in ρn. To obtain the uniform bound on the p-th moment of Xn, we leverage the tail moment

identity: for any nonnegative random variable Z

E [Zp] =

∫ ∞

0
psp−1 P (Z > s) ds
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which we apply for Z = (Xn −B
(1)
α )+, obtaining

E
[(

Xn −B(1)
α

)p
+

∣∣∣ ρn] =∫ ∞

0
psp−1 P

(
Xn > B(1)

α + s
∣∣∣ ρn) ds

≤
∫ ∞

0
psp−1e−s/B

(2)
α ds = pΓ(p) (B(2)

α )p
(31)

where we applied the bound in (30) with s = tB
(2)
α . Now we simply observe that

Xn =
(
Xn −B(1)

α

)
+
+min

(
Xn, B

(1)
α

)
,

and use the inequality (a+ b)p ≤ 2p−1(ap + bp) valid for all a, b ≥ 0 and p ≥ 1. This yields

Xp
n ≤ 2p−1

{(
Xn −B(1)

α

)p
+
+
(
B(1)

α

)p}
Hence, taking conditional expectation and using (31), we have

E [Xp
n | ρn] ≤ 2p−1

{
(B(1)

α )p + pΓ(p) (B(2)
α )p

}
:= Cα,p

which, taking the supremum over n ≥ 2, gives for any ρn

sup
n≥2

E [Xp
n | ρn] ≤ Cα,p.

Proof of Corollary 3.5. Given the result in Theorem 3.3, taking expectation w.r.t. the parition ρn we

have

P
(
Kn −Hn >

[
B(1)

α +B(2)
α log(1/δn)

]
log n

)
≤ δn (32)

for any vanishing sequence (δn)n≥1 ⊂ (0, 1/2). Taking Dα := B
(1)
α

log 2 +B
(2)
α we have[

B(1)
α +B(2)

α log(1/δn)
]
logn ≤ Dα log(1/δn) logn

since log 2 < log(1/δn). Hence (32) becomes

P (Kn −Hn > Dα log(1/δn) logn) ≤ δn.

Finally, if
∑

n≥1 δn <∞, then by Borel-Cantelli

P
(
lim sup
n→∞

{Kn −Hn > Dα log(1/δn) logn}
)

= 0.
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B Additional details on numerical experiments

B.1 Three equally-balanced clusters
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Figure 5: Three equally-balanced clusters: Rand index between the partition’s point estimate
and the true clustering configuration. The point estimate is obtained by minimizing the Binder loss
function.

(a) Slice n = 600 (b) BGS L = 10 n = 600 (c) CRP with atoms n = 600

(d) Slice no atoms n = 600 (e) BGS L = 600, n = 600 (f) CRP n = 600

Figure 6: Three equally-balanced clusters: Posterior co-clustering matrices, computed discarding
5,000 iterations of burn-in.
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B.2 Perturbed Zipf
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Figure 7: Perturbed Zipf–generated data: Time per 1000 iterations in seconds computed as average
over 10,000 iterations (including burn-in) as a function of input size (x-axis on log scale). Codes are in
R and run on a laptop with 13th Gen Intel(R) Core(TM) i7-1370P.
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Figure 8: Perturbed Zipf–generated data: ESS (w.r.t. to the log likelihood) per second computed
as average over the last 5,000 iterations (excluding a burn-in of 5,000) as a function of input size (x-axis
on log scale). Codes are in R and run on a laptop with 13th Gen Intel(R) Core(TM) i7-1370P.
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Figure 9: Perturbed Zipf–generated data: ESS (w.r.t. to the number of clusters) per second
computed as average over the last 5,000 iterations (excluding a burn-in of 5,000) as a function of input
size (x-axis on log scale). Codes are in R and run on a laptop with 13th Gen Intel(R) Core(TM)
i7-1370P.
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Figure 10: Perturbed Zipf–generated data: Rand index between the partition’s point estimate

and the true clustering configuration. The point estimate is obtained by minimizing the Binder loss

function after discarding the first 5,000 iterations as burn-in.
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(a) Truth n = 150 (b) Truth n = 300 (c) Truth n = 600

(d) Slice n = 150 (e) Slice n = 300 (f) Slice n = 600

(g) BGS n = 150 (h) BGS n = 300 (i) BGS n = 600

Figure 11: Perturbed Zipf–generated data: Posterior co-clustering matrices, computed discarding
5,000 iterations of burn-in.
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