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Abstract

Hypertensive disorders of pregnancy occur in about 10% of pregnant women
around the world. Though there is evidence that hypertension impacts maternal
cardiac functions, the relation between hypertension and cardiac dysfunctions is only
partially understood. The study of this relationship can be framed as a joint inferen-
tial problem on multiple populations, each corresponding to a different hypertensive
disorder diagnosis, that combines multivariate information provided by a collection
of cardiac function indexes. A Bayesian nonparametric approach seems particularly
suited for this setup and we demonstrate it on a dataset consisting of transthoracic
echocardiography results of a cohort of Indian pregnant women. We are able to per-
form model selection, provide density estimates of cardiac function indexes and a
latent clustering of patients: these readily interpretable inferential outputs allow to
single out modified cardiac functions in hypertensive patients compared to healthy
subjects and progressively increased alterations with the severity of the disorder.
The analysis is based on a Bayesian nonparametric model that relies on a novel hi-
erarchical structure, called symmetric hierarchical Dirichlet process. This is suitably
designed so that the mean parameters are identified and used for model selection
across populations, a penalization for multiplicity is enforced, and the presence of
unobserved relevant factors is investigated through a latent clustering of subjects.
Posterior inference relies on a suitable Markov Chain Monte Carlo algorithm and the
model behaviour is also showcased on simulated data.

Keywords— Bayesian nonparametrics, clustering populations, Dirichlet process, hierarchical

partitions, hierarchical process, hypertensive disorders of pregnancy, model based clustering

1 Introduction

Hypertensive disorders of pregnancy are a class of high blood pressure disorders that occur

during the second half of pregnancy, which include gestational hypertension, preeclampsia

and severe preeclampsia. They are characterized by a diastolic blood pressure higher

than 90 mm Hg and/or a systolic blood pressure higher than 140 mm Hg and they are

often accompanied by proteinuria. These disorders affect about 10% of pregnant women

around the world, with preeclampsia occurring in 2–8% of all pregnancies (Timokhina
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et al., 2019). These disorders represent one of the leading causes of maternal and fetal

morbidity and mortality, contributing to 7–8% of maternal death worldwide (Dolea and

AbouZahr, 2003; Shah et al., 2009; McClure et al., 2009). The World Health Organization

estimates that the incidence of preeclampsia is seven times higher in developing countries

than in developed countries. However, the occurrence of these diseases appears under-

reported in low and middle income countries, implying that the true incidence is unknown

(Igberase and Ebeigbe, 2006; Malik et al., 2019). While there is evidence that hypertensive

disorders of pregnancy are related with the development of cardiac dysfunctions both in

the mother and in the child (Bellamy et al., 2007; Davis et al., 2012; Ambrožic et al.,

2020; Garcia-Gonzalez et al., 2020; Aksu et al., 2021; deMartelly et al., 2021), there is

no common agreement on the relation between the severity of hypertension and cardiac

dysfunction (Tatapudi and Pasumarthy, 2017b) and echocardiography is not included in

baseline evaluation of hypertensive disorders of pregnancy. Further investigations on these

disorders are needed, especially for developing countries, where women often give birth at

a younger age with respect to developed countries.

The goal of this work is to detect which cardiac function is altered and under which

hypertensive disorders by relying on a principled Bayesian nonparametric approach. An

interesting case-control study to explore the relation between cardiac dysfunction and hy-

pertensive disorders is provided by Tatapudi and Pasumarthy (2017a), where the measures

of ten different cardiac function indexes were recorded in four groups of pregnant women

in India. Groups of women are characterized by different hypertensive disorder diagnoses,

that are naturally ordered based on the severity of the diagnosed disorder: healthy (C),

gestational hypertension (G), mild preeclampsia (M) and severe preeclampsia (S). Hyper-

tensive diagnoses are used as identifiers for what we call populations of patients and we

refer to cardiac function indexes also with the term response variables. For each response

variable we want to determine a partition of the four populations of patients. This amounts

to identifying similarities between different hypertensive disorders, with respect to each car-

diac index. Supposing, for instance, that the selected partition assigns all the populations

to the same cluster, one can conclude that no alteration is shown for the corresponding

cardiac index across different hypertensive diseases.

Our goal of identifying a partition of the four patients’ populations for each of the ten

responses can be rephrased as a problem of multiple model selection: we want to select

the most plausible partition for each cardiac index. Frequentist hypothesis testing does

not allow to deal with more than two populations in a straightforward way and pairwise

comparisons may lead to conflicting conclusions. Conversely, a Bayesian approach yields

the posterior distribution on the space of partitions, which can be used for simultaneous

comparisons. Moreover, the presence of M = 10 jointly tested cardiac indexes requires

to perform model selection repeatedly ten times. Once again, a Bayesian approach seems

to be preferred, because, as observed for instance by Scott and Berger (2006), it does not

require the introduction of a penalty term for multiple comparison, thanks to the prior

distribution build-in penalty.

Here we design a Bayesian nonparametric model, that is tailored to deal with both

a collection of ordered populations and the multivariate information of the response vari-

ables, while preserving the typical flexibility of nonparametric models and producing easily
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interpretable results. When applied to the dataset on transthoracic echocardiography re-

sults for a cohort of Indian pregnant women in Section 5, our model effectively identifies

modified cardiac functions in hypertensive patients compared to healthy subjects and pro-

gressively increased alterations with the severity of the disorder, in addition to other more

subtle findings. The observed data Xi,j,m represent the measurement of the m-th response

variable (cardiac index) on the i-th individual (pregnant woman) in the j-th population

(hypertensive disorder) and, as in standard univariate ANOVA models, they are assumed

to be partially exchangeable across disorders. This means that for every m ∈ {1, . . . ,M},
the law of ( (Xi,1,m)i≥1, . . . , (Xi,J,m)i≥1) is invariant with respect to permutations within

each sequence of random variables, namely for any positive integers n1, . . . , nJ

( (Xi,1,m)n1
i=1, . . . , (Xi,J,m)nJ

i=1)
d
= ( (Xσ1(i),1,m)n1

i=1, . . . , (XσJ (i),J,m)nJ
i=1)

for all permutations σj of (1, . . . , nj), with j = 1, . . . , J . This is a natural generalization

of exchangeability to tackle heterogeneous data and, by de Finetti’s representation theo-

rem, it amounts to assuming the existence of a collection of (possibly dependent) random

probability measures {πj,m : j = 1, . . . , J m = 1, . . . ,M} such that

Xi,j,m | πj,m
iid∼ πj,m i = 1, . . . , nj

Hence, for any two populations j 6= j′, homogeneity corresponds to πj,m = πj′,m (almost

surely). However, a reliable assessment of this type of homogeneity is troublesome when

having just few patients per diagnosis, as it happens in the mild preeclampsia subsample.

Without relying on simplifying parametric assumptions, a small sub-sample size may not

be sufficiently informative to infer equality of entire unknown distributions. To overcome

this issue, without introducing parametric assumptions, we resort to an alternative weaker

notion of homogeneity between populations j and j′: we only require the conditional means

of the two populations to (almost surely) coincide

E(Xi,j,m | πj,m) = E(Xi,j′,m | πj′,m). (1)

According to this definition, the detection of heterogeneities in cardiac function indexes

amounts to inferring which cardiac indexes have means that differ across diagnoses, as it

is done in standard parametric ANOVA models. Besides clustering populations according

to (1), it is also of interest to cluster patients, both within and across different groups,

once the effect of the specific hypertensive disorder is taken into account. This task may

be achieved by assuming a model that decomposes the observations as

Xi,j,m = θj,m + εi,j,m εi,j,m|(ξi,j,m, σ2
i,j,m)

ind∼ N(ξi,j,m, σ
2
i,j,m) (2)

and the ξi,j,m have a symmetric distribution around the origin, in order to ensure E(ξi,j,m) =

0. In view of this decomposition, we will let θj,m govern the clustering of populations while

the (ξi,j,m, σ
2
i,j,m)’s determine the clustering of individuals, namely patients, after removing

the effect of the specific hypertensive disorder. In order to pursue this, for each cardiac

index m, we will specify a hierarchical process prior for (ξi,j,m, σ
2
i,j,m) that is suited to
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infer the clustering structure both within and across different hypertensive disorders for a

specific cardiac index. In particular, we will deploy a novel instance of hierarchical Dirichlet

process, introduced in Teh et al. (2006), that we name symmetric, to highlight its centering

in 0.

Early examples of Bayesian nonparametric models for ANOVA can be found in Cifarelli

and Regazzini (1978) and Muliere and Petrone (1993), while the first popular proposal, due

to De Iorio et al. (2004), uses the dependent Dirichlet process (DDP) (MacEachern, 2000)

and is therefore termed ANOVA-DDP. This model is mainly tailored to estimate popu-

lations’ probability distributions, while we draw inferences over clusters of populations’

means and obtain estimates of the unknown distributions as a by-product. Moreover, the

ANOVA-DDP of De Iorio et al. (2004) was not introduced as a model selection procedure.

A popular Bayesian nonparametric model, that does cluster populations and can be used

for model selection, is the nested Dirichlet process of Rodriguez, Dunson, and Gelfand

(2008). As shown in Camerlenghi et al. (2019a), such a prior is biased towards homogene-

ity, in the sense that even a single tie between populations j and j′, namely Xi,j,m = Xi′,j′,m

for some i and i′, entails πj,m = πj′m (almost surely). In order to overcome such a draw-

back, a novel class of nested, and more flexible, priors has been proposed in Camerlenghi

et al. (2019a). See also Soriano and Ma (2017) for related work. Interesting alternatives

that extend the analysis to more than two populations can be found in Christensen and

Ma (2020), Lijoi, Prünster, and Rebaudo (2022) and in Beraha, Guglielmi, and Quintana

(2021). Another similar proposal is the one by Gutiérrez et al. (2019), whose model iden-

tifies differences over cases’ distributions and the control group. These models imply that

two populations belong to the same cluster if they share the entire distribution. However,

as already mentioned, distribution-based clustering is not ideal when dealing with scenar-

ios as the one of hypertensive dataset. Further evidence will be provided in Section 5.1,

through simulation studies. In addition, note that all these contributions deal with only

one response variable and would need to be suitably generalized to fit the setup of this

paper. As far as the contributions treating multiple response variables are concerned, uses

of nonparametric priors for multiple testing can be found, for instance, in Gopalan and

Berry (1998), Do, Müller, and Tang (2005), Dahl and Newton (2007), Guindani, Müller,

and Zhang (2009), Martin and Tokdar (2012) and more recently in Cipolli, Hanson, and

McLain (2016), who propose an approximate finite Pólya tree multiple testing procedure

to compare two-samples’ locations, and in Denti et al. (2020). However, in all these contri-

butions, models are developed directly over summaries of the original data (e.g. averages,

z-scores) and, as such, do not allow to draw any inference on the entire distributions and

clusters of subjects.

The outline of the paper is as follows. In Section 2 we introduce the model, which makes

use of an original hierarchical prior structure for symmetric distributions (Section 2.2).

In Section 3 we derive the prior law of the random partitions induced by the model, key

ingredient for the Gibbs sampling scheme devised in Section 4. In Section 5, we first present

a series of simulation studies that highlight the behaviour of the model before applying it

to obtain our results on cardiac dysfunction in hypertensive disorders. Section 6 contains

some concluding remarks. As Supplementary Material we provide the datasets and Python

codes, some further background material and details about the derivation of the posterior
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sampling scheme as well as additional simulation studies and results on the application,

including an analysis of prior sensitivity.

2 The Bayesian nonparametric model

The use of discrete nonparametric priors for Bayesian model-based clustering has become

standard practice. The Dirichlet process (DP) (Ferguson, 1973) is the most popular in-

stance, and clustering is typically addressed by resorting to a mixture model, which with

our data structure amounts to

Xi,j,m|ψi,j,m
ind∼ k(Xi,j,m;ψi,j,m), ψi,j,m|p̃j,m

ind∼ p̃j,m

for m = 1, . . . ,M , j = 1, . . . , J and i = 1, . . . , nj. Here k( · ; · ) is some kernel and the

p̃j,m’s are discrete random probability measures. Hence, the ψi,j,m’s may exhibit ties. The

model specification for p̃j,m will be tailored to address the following goals: (i) cluster the J

probability distributions based on their means; (ii) cluster the observations Xi,j,m according

to the ties induced on the ψi,j,m’s by the p̃j,m’s for a given fixed j and across different j’s.

These two issues will be targeted separately: we first design a clustering scheme for the

populations, through the specification of a prior on the means of the Xi,j,m’s and, then,

we cluster the data using a hierarchical DP having a specific invariance structure that is

ideally suited to the application at hand.

2.1 The prior on disease-specific locations

As a model for the observations we consider a nonparametric mixture of Gaussian distri-

butions specified as

Xi,j,m | (θm, ξm,σ2
m)

ind∼ N (θj,m + ξi,j,m, σ
2
i,j,m) (3)

where θm = (θ1,m, . . . , θJ,m), ξm = (ξ1,1,m, . . . , ξ1,n1,m, ξ2,1,m, . . . , ξnJ ,J,m), with a similar

definition for the vector σ2
m, and N (µ, σ2 ) denotes a normal distribution with mean µ

and variance σ2. The assumption in (3) clearly reflects (2). Moreover, in order to account

for the two levels of clustering we are interested in, we will assume that

(θ1, . . . ,θM) ∼ P, (ξi,j,m, σ
2
i,j,m) | q̃j,m

iid∼ q̃j,m (i = 1, . . . , nj) (4)

where q̃1,m, . . . , q̃J,m are discrete random probability measures independent from (θ1, . . . ,θM).

Thus, the likelihood corresponds to

M∏
m=1

J∏
j=1

nj∏
i=1

1

σi,j,m
ϕ
(xi,j,m − θj,m − ξi,j,m

σi,j,m

)
q̃j,m(dξi,j,m, dσi,j,m) (5)

with ϕ denoting the standard Gaussian density. Relevant inferences can be carried out if

one is able to marginalize this expression with respect to both (θ1, . . . ,θM) and (q̃1,m, . . . , q̃J,m)

for each m = 1, . . . ,M .
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This specification allows to address the model selection problem in the following way. If

Mm stands for the space of all partitions of the J populations for the m-th cardiac function

index, then Mm = {Mm
b : b = 1, . . . , card(PJ)} where PJ is the collection of all possible

partitions of [J ] = {1, . . . , J}. In our specific case, J = 4 and card(PJ) = 15, thus we have

15 competing models per cardiac index. Each competing model corresponds to a specific

partition in Mm. In particular, the partition arises from ties between the population

specific means in θm and, hence, the distribution P in (4) needs to associate positive

probabilities to ties between the parameters within the vector θm, for each m = 1, . . . ,M .

Let us start considering as distribution P a well-known effective clustering prior, i.e. a

mixture of DPs in the spirit of Antoniak (1974), namely

θj,m | p̃m
iid∼ p̃m j = 1, . . . , J

p̃m | ω
iid∼ DP(ω,Gm) m = 1, . . . ,M

ω ∼ pω

(6)

where DP(ω,Gm) denotes the DP with concentration parameter ω and non-atomic baseline

probability measure Gm and pω is a probability measure on R+. The discreteness of the

DP implies the presence (with positive probability) of ties within the vector of locations

θm associated to a certain cardiac index m, as desired. The ties give rise to a random

partition: as shown in Antoniak (1974), the probability of observing a specific partition of

the elements in θm consisting of k ≤ J distinct values with respective frequencies n1, . . . , nk
coincides with

Π
(J)
k (n1, . . . , nk) =

ωk

(ω)J

k∏
i=1

(ni − 1)! (7)

where (ω)J = Γ(ω+J)/Γ(ω). The use of a shared concentration parameter over (7) to ad-

dress multiple model selection has been already successfully employed in Moser, Rodŕıguez

and Lofland (2021), where they cluster parameters in a probit model. When there is no

pre-experimental information available on competing partitions, the use of (7) as a prior for

model selection has some relevant benefits. Indeed, it induces borrowing of strength across

diagnoses and, being ω random, it generates borrowing of information also across cardiac

indexes, thus improving the Bayesian learning mechanism. These two features can also be

given a frequentist interpretation in terms of desirable penalties. As a matter of fact, the

procedure penalizes for the multiplicity of the model selections that are performed. The

penalty has to be meant in the following way: while J and/or M increase, the prior odds

change in favor of less complex models. For more details on this, see Scott and Berger

(2010). Summing up, the mixture of DPs automatically induces a prior distribution on

{Mm : m = 1, . . . ,M}, that arises from (7) combined with the prior pω on ω, and it

presents desirable properties for model selection that can be interpreted either in terms of

borrowing of information or in terms of penalties.

However, in the analysis of hypertensive disorders, some prior information on competing

models is available, and this is not yet incorporated in (7). In fact, as already mentioned,

there is a natural order of the diagnoses, which is given by the severity of the disorders,

i.e. C, G, M, S. Partitions that do not comply with this ordering, e.g. {{C, S}{G}, {M}},
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should be excluded from the support of the prior. Thus, we consider a prior over Mm

that associates zero probability to partitions that do not respect the natural order of the

diagnoses and a probability proportional to that in (7) for the remaining partitions, i.e.

P(Mm
b | ω) ∝

{
Π

(J)
k (n1, . . . , nk) if Mm

b is compatible with the natural order

0 otherwise
(8)

This amounts to a distribution P for (θ1, . . . ,θM) given by

(θ1,m, . . . , θJ,m) | ω ind∼ Pω,Gm m = 1, . . . ,M

ω ∼ pω
(9)

where Pω,Gm is the distribution obtained sampling a partition according to (8) and as-

sociating to each cluster a unique value sampled from Gm. Using (9) as a prior for the

disease-specific locations, we preserve the desirable properties of the mixture of DPs men-

tioned before, while incorporating prior information on the severity of the diseases.

As detailed in the next section, we further define random probability measures q̃j,m that

satisfy the symmetry condition

q̃j,m(A×B) = q̃j,m((−A)×B) a.s. (10)

for any A and B. This condition ensures that the parameters θj,m, for j = 1, . . . , J and

m = 1, . . . ,M , in (3) are identified, namely E(Xi,j,m | θm, q̃j,m) = θj,m with probability

one. This identifiability property is crucial to make inference over the location parameters

θm’s. Similar model specifications for discrete exchangeable data have been proposed and

studied in Dalal (1979b), Doss (1984), Diaconis and Freedman (1986) and Ghosal, Ghosh,

and Ramamoorthi (1999), of which (5) represents a generalization to density functions and

partially exchangeable data.

2.2 The prior for the error terms

While the clustering of populations is governed by (8), we use a mixture of hierarchical

discrete processes for the error terms. This has the advantage of modeling the clustering of

the observations, both within and across different samples, once the disease-specific effects

are account for. This clustering structure allows to model heterogeneity across patients in

a much more realistic way with respect to standard ANOVA models based on assumption

of normality. Cardiac indexes may be influenced by a number of factors that are not

directly observed in the study, such as pre-existing conditions (Hall, George, and Granger,

2011) and psychosocial factors (Pedersen et al., 2017). These unobserved relevant factors

may be shared across patients with the same or a different diagnosis and may also result

in outliers. To take into account this latent heterogeneity of the data, we introduce the

hierarchical symmetric DP that satisfies the symmetry condition in (10) and, moreover,

allows to model heterogeneous data similarly to the hugely popular hierarchical DP (Teh

et al., 2006).

The basic building block of the proposed prior is the invariant Dirichlet process, which
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was introduced for a single population (J = 1) in an exchangeable framework by Dalal

(1979a). Such a modification of the DP satisfies a symmetry condition, in the sense that

it is a random probability measure that is invariant with respect to a chosen group of

transformations G. A more formal definition and detailed description of the invariant DP

can be found in Section A of the Supplement. For our purposes it is enough to consider

the specific case of the symmetric Dirichlet process, which can be constructed through a

symmetrization of a Dirichlet process. Consider a non-atomic probability measure P0 on

R and let Q̃0 ∼ DP(α, P0). If

Q̃(A) =
Q̃0(A) + Q̃0(−A)

2
∀A ∈ B(R) (11)

where −A = {x ∈ R : −x ∈ A}, then Q̃ is symmetric about 0 (almost surely) and

termed symmetric DP, in symbols Q̃ ∼ s-DP(α , P0). For convenience and without loss of

generality, we assume that P0 is symmetric: this implies that P0 is the expected value of

Q̃ making it an interpretable parameter. The random probability measure Q̃ is the basic

building block of the hierarchical process that we use to model the heterogeneity of the

error terms across different populations, j = 1, . . . , J , in such a way that clusters identified

by the unique values can be shared within and across populations. This prior is termed

symmetric hierarchical Dirichlet process (s-HDP) and described as

q̃j,m | γj,m, q̃0,m
ind∼ s-DP(γj,m, q̃0,m)

q̃0,m | αm
ind∼ s-DP(αm, P0,m)

(12)

where γj,m and αm are positive parameters and P0,m is a non-atomic probability distribution

symmetric about 0. We use the notation (q̃1,m, . . . , q̃J,m) ∼ s-HDP(γm, αm, P0,m), where

γm = (γ1,m, . . . , γj,m). This definition clearly ensures the validity of (10). A graphical

model representation of the over-all proposed model is displayed in Figure 1.

Still referring to the decomposition of the observations into disease-specific locations

and an error term, i.e. Xi,j,m = θj,m + εi,j,m, it turns out that the εi,j,m’s are from a

symmetric hierarchical DP mixture (s-HDP mixture) with a normal kernel. Hence, the

patients’ clusters are identified through the εi,j,m, which, according to (3), are conditionally

independent from a N (ξi,j,m, σ
2
i,j,m) given (ξi,j,m, σ

2
i,j,m). The choice of the specific invariant

DP is aimed at ensuring that E(εi,j,m|q̃j,m) = 0. The clusters identified by the s-HDP

mixture can be interpreted as representing common unobserved factors across patients,

once the disease-specific locations have been accounted for. Indeed, for any pair of patients,

we may consider the decomposition Xi,j,m−Xi′,j′,m = ∆
(m)
θ +∆

(m)
ξ +(ei,j,m−ei′,j′,m) where

∆
(m)
θ = θj,m−θj′,m, ∆

(m)
ξ = ξi,j,m−ξi′,j′,m and ei,j,m and ei′,j′,m are independent and normally

distributed random variables with zero mean and variances σ2
i,j,m and σ2

i′,j′,m, respectively.

Hence, patients’ clustering reflects the residual heterogeneity that is not captured by the

disease-specific component ∆
(m)
θ and are related to the subject-specific locations ∆

(m)
ξ and

to the zero-mean error component (ei,j,m−ei′,j′,m). In view of this interpretation, using a s-

HDP mixture over error terms offers a three-fold advantage. Firstly, the presence of clearly

separated clusters of patients within and across populations will indicate the presence of

unobserved relevant factors which affect the cardiac response variables. Secondly, single
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θmω

Xi,j,m

εi,j,m

q̃j,m

q̃0,m αm

γj,m

Figure 1: Graphical representation of the model. Each node represents a random variable and
each rectangle denotes conditional i.i.d. replications of the model within the rectangle.

patients with very low probabilities of co-clustering with all other subjects will have to be

interpreted as outliers. Finally, the estimated clustering structure can also be used to check

whether the relative effect of a certain disease (with respect to another) is fully explained

by the corresponding ∆
(m)
θ . To clarify this last point consider two diseases: if the posterior

co-clustering probabilities among patients sharing the same disease are different between

the two populations, this will indicate that different diagnoses not only have an influence

on disease-specific locations (which is measured by ∆
(m)
θ ), but they also have an impact on

the shape of the distribution of the corresponding cardiac index. More details on this can

be found in Section D of the Supplement.

3 Marginal distributions and random partitions

As emphasized in the previous sections, ties among the θj,m’s and the (ξi,j,m, σ
2
i,j,m)’s are

relevant for inferring the clustering structure both among the populations (hypertensive

diseases) and among the individual units (patients). Indeed, for each m (cardiac index)

they induce a random partition that emerges as a composition of two partitions generated

respectively by the prior in (9) and the s-HDP. The laws of these random partitions are not

only crucial to understand the clustering mechanism, but also necessary in order to derive

posterior sampling schemes. In this section such a law is derived and used to compute the

predictive distributions that, jointly with the likelihood, determine the full conditionals

of the Gibbs sampler devised in Section 4. To reduce the notational burden, in this and

the following section, we remove the dependence of observations and parameters on the

specific response variablem and denote with φi,j the pair (ξi,j, σ
2
i,j) and with φ the collection

(φ1,1, . . . , φ1,n1 , φ2,1, . . . φnJ ,J).

Conditionally on ω, the law of the partition in (8) leads to the following predictive
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distribution for the disease-specific locations

θj |ω, θ1, . . . , θj−1 ∼ aj(ω, θ1, . . . , θj−1) δθj−1
+ [1− aj(ω, θ1, . . . , θj−1)]G

where

aj(ω, θ1, . . . , θj−1) =

∑
(∗j) Π

(J)
k (n1, . . . , nk)∑

(∆j) Π
(J)
k (n1, . . . , nk)

(13)

where the sum at the denominator runs over the set of partitions consistent with the

one generated by (θ1, . . . , θj−1) and the one at the numerator runs over a subset of those

partitions where one further has θj = θj−1. For j = 4, the predictive equals

θ4 | ω, θ1, θ2, θ3


3

ω+3
δθ3 + ω

ω+3
G if θ1 = θ2 = θ3

2
ω+2

δθ3 + ω
ω+2

G if θ1 6= θ2 = θ3

1
ω+1

δθ3 + ω
ω+1

G otherwise

Explicit expressions for the function a, for j = 1, 2, 3, can be easily computed using (13)

and (8) and are provided in Section B of the Supplement.

Moving to second-level partitions induced by the s-HDP, we recall that the key con-

cept for studying random partitions on multi-sample data is the partially exchangeable

partition probability function (pEPPF). See, e.g., Lijoi, Nipoti, and Prünster (2014) and

Camerlenghi et al. (2019b). The pEPPF returns the probability of a specific multi-sample

partition and represents the appropriate generalization of the well-known single-sample

EPPF, which in the DP case corresponds to (7). Discreteness of the s-HDP (q̃1, . . . , q̃m)

in (12) induces a partition of the elements of φ into equivalence classes identified by the

distinct values. Taking into account the underlying partially exchangeable structure, such

a random partition is characterized by the pEPPF

Π̃
(N)
k (n1, . . . ,nJ) = E

(∫
Φk

J∏
j=1

k∏
h=1

q̃
nj,h

j,m (dφi)

)
(14)

where nj = (nj,1, . . . , nj,k) are non-negative integers, for any j = 1, . . . , J , such that nj,h
is the number of elements in φ corresponding to population j and belonging to cluster

h. Thus
∑J

j=1 nj,h ≥ 1 for any h = 1, . . . , k,
∑k

h=1 nj,h = nj and
∑k

h=1

∑J
j=1 nj,h =

N . The determination of probability distributions of this type is challenging and only

recently the first explicit instances have appeared in the literature. See e.g., Lijoi et al.

(2014), Camerlenghi et al. (2019a) and Camerlenghi et al. (2019b). With respect to the

hierarchical case considered in Camerlenghi et al. (2019b), the main difference is that here

we have to take into account the specific structure (11) of the q̃j,m. The almost sure

symmetry of the process generates a natural random matching between sets in the induced

partition. Therefore, instead of studying the marginal law in (14), we derive the joint

law of the partition and of the random matching. Formally, consider a specific partition

{A+
1 , A

−
1 , . . . , A

+
k , A

−
k } of φ, such that, for h = 1, . . . , k, all the elements in A+

h belong to

R+ × R+, all the elements in A−h belong to R− × R+ and, if φi,j ∈ A+
h and φi′,j′ ∈ A−h ,

then the element-wise absolute values of φi,j and φi′,j′ are equal. Denote with n+
j,h the
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Figure 2: Chinese restaurant franchise representation of the symmetric hierarchical DP for
J = 2 populations. Each circle represents a table.

number of elements in A+
h ∩ {φi,j, i = 1, . . . , nj} and with n−j,h the number of elements in

A−h ∩ {φi,j, i = 1, . . . , nj}. The probability of observing {A+
1 , A

−
1 , . . . , A

+
k , A

−
k } is

≈
Π

(N)
k (n+

1 ,n
−
1 , . . . ,n

+
J ,n

−
J ) = E

(∫
Φk

J∏
j=1

k∏
h=1

q̃j,m
n+
j,h+n−j,h(dφ)

)
(15)

with n+
j = (n+

j,1, . . . , n
+
j,k). As for the determination of (15), a more intuitive understand-

ing may be gained if one considers its corresponding Chinese restaurant franchise (CRF)

metaphor, which displays a variation of both the standard Chinese restaurant franchise

of Teh et al. (2006) and the skewed Chinese restaurant process of Iglesias, Orellana, and

Quintana (2009). Figure 2 provides a graphical representation. The scheme is as follows:

there are J restaurants sharing the same menu and the customers are identified by their

choice of φi,j but, unlike in the usual CRF, at each table two symmetric dishes are served.

Denote with φ∗t,j = (ξ∗t,j, σ
2∗
t,j) and −φ∗t,j = (−ξ∗t,j, σ2∗

t,j) the two dishes served at table t

in restaurant j, with φ∗∗h = (ξ∗∗h , σ
∗∗2
h ) and −φ∗∗h = (−ξh, σ∗∗2h ) the h-th pair of dishes in

the menu and with n+
j,h and n−j,h the number of customers in restaurant j eating dish φ∗∗h

and −φ∗∗h , respectively. This means that two options are available to a customer entering

restaurant j: she/he will either sit at an already occupied table, with probability propor-

tional to the number of customers at that table or will sit at a new table with probability

proportional to the concentration parameter γj. In the former case, the customer will

choose the dish φ∗t,j with probability 1/2 and −φ∗t,j otherwise. In the latter case, the cus-

tomer will eat a dish served at another table of the franchise with probability proportional

to half the number of tables that serve that dish, or will make a new order with probability

proportional to the concentration parameter α. In view of this scheme, the probability in

(15) turns out to be

≈
Π

(N)
k (n+

1 , . . . ,n
−
J ) = 2−N Π̄

(N)
k (n+

1 + n−
1 , . . . ,n

+
J + n−

J )

and Π̄
(N)
k on the right-hand-side is the pEPPF of the hierarchical DP derived in Camer-

11



lenghi et al. (2019b), namely

Π̄
(N)
k (n1, . . . ,nk) =

(
J∏
j=1

∏k
i=1(γj)nj,h

(γj)nj

) ∑
`

αk

(α)|`|

k∏
h=1

(`•,h − 1)!
J∏
j=1

P (Knj,h
= `j,h)

where each sums runs over all `j,h in {1, . . . , nj,h}, if nj,h ≥ 1, and equals 1 if nj,h = 0,

whereas `•,h =
∑J

j=1 `j,h and |`| =
∑J

j=1

∑k
h=1 `j,h. Note that the latent variable `j,h is

the number of tables in restaurant j serving the h-th pair of dishes. Moreover, Knj,h
is a

random variable denoting the number of distinct clusters, out of nj,h observations generated

by a DP with parameter γj and diffuse baseline P0 and it is well-known that

P(Knj,h
= `j,h) =

γ
`j,h
j

(γj)nj,h

|s(nj,h, `j,h)|

where |s(nj,h, `j,h)| is the signless Stilring number of the first kind. In view of this, one can

deduce the predictive distribution

P(φnj+1,j ∈ · |φ) =
γj

i− 1 + γj

∑
`

α

|`|+ α
π(` |φ)P0(·)

+
k∑

h=1

[
n+
j,h + n−j,h
nj + γj

+
γj

nj + γj

∑
`

`•,h
|`|+ α

π(` |φ)

](
δφ∗∗h (·) + δ−φ∗∗h (·)

2

)

where

π(` |φ) ∝ αk

(α)|`|

k∏
h=1

(`•,h − 1)!
J∏
j=1

γ
`j,h
j

(γj)n+
j,h+n−j,h

|s(n+
j,h + n−j,h, `j,h)|1{1,...,n+

j,h+n−j,h}
(`j,h)

is the posterior distribution of the latent variables `j,h’s, and 1A is the indicator function

of set A.

4 Posterior inference

The findings of the previous section are the key ingredients to perform posterior inference

with a marginal Gibbs sampler. The output of the sampler is structured into three levels:

the first produces posterior probabilities on partitions of disease-specific locations; the

second generates density estimates; the third provides clusters of patients. For notational

simplicity, we omit the dependence on m, except for the description of the sampling step

that generates ω. Recall that θ = (θ1, . . . , θJ) and φ = {(φ1,j, . . . , φnj ,j) : j = 1, . . . , J},
with φi,j = (ξi,j, σ

2
i,j). The target distribution of the sampler is the joint distribution of θ,

φ and ω conditionally on the observed data X.

Sampling φ. In view of the CRF representation of the s-HDP, ti,j stands for the

label of the table where the i-th customer in restaurant j sits and ht,j for the dish label

served at table t in restaurant j and with t and h we denote the corresponding arrays.

Moreover, define the assignment variable si,j = 1(φi,j = φ∗ti,j ,j)− 1(φi,j = −φ∗ti,j ,j) and s is

the corresponding arrays. In order to generate φ, we need to sample

12



(i) (ti,j, si,j) for i = 1, . . . , nj and j = 1, . . . , J ;

(ii) ht,j for t ∈ t and j = 1, . . . , J ;

(ii) φ∗∗h for h ∈ h.

Note that, using the latent allocation indicators in t and h, the sampling scheme is more

efficient than sampling directly from the full conditional of each φi,j, since the algorithm

can update more than one parameter simultaneously (Neal, 2000). Define εi,j = Xi,j − θj
and denote with h(εi,j,m|φ∗) the conditional normal density of εi,j given φ∗ = (ξ∗, σ2∗),

while the marginal density is

h̄(εi,j) =

∫
h(εi,j|φ)P0(dφ)

To sample (ti,j, si,j) from their joint full conditional, we first sample ti,j from

P (ti,j = t | t−(i,j),h−(i,j),φ∗−(i,j),φ∗∗−(i,j), εi,j) ∝

{
n
−(i,j)
t,j pold(εi,j|φ∗t,j) if t ∈ t−(i,j)

γj pnew(εi,j|φ∗∗−(i,j)) if t = tnew

where t−(i,j), h−(i,j) φ∗−(i,j),φ∗∗−(i,j) coincide with the arrays t, h φ∗,φ∗∗ after having

removed the entries corresponding to the i-th customer in restaurant j. Moreover

pold(εi,j|φ∗t,j) =
1

2
h(εi,j|φ∗t,j) +

1

2
h(εi,j| − φ∗t,j)

and

pnew(εi,j|φ∗∗−(i,j)) =
k−(i,j)∑
h=1

`•,h
|`|+ α

{
1

2
h(εi,j|φ∗∗h ) +

1

2
h(εi,j| − φ∗∗h )

}
+

α

|`|+ α
h̄(εi,j)

Then we sample si,j from its full conditional

p(si,j = s | φ∗, ti,j, εi,j) ∝

{
h(εi,j|φ∗ti,j) if s = 1

h(εi,j| − φ∗ti,j) if s = −1

The conditional distribution of ht,j is

p(ht,j = h | t,h−(t,j),φ∗∗−(t,j), s, ε) ∝


`
−(t,j)
•,h

∏
{(i,j): ti,j=t}

h(si,j εi,j|φh) if h ∈ h−(t,j)

α

∫ ∏
{(i,j): ti,j=t}

h(si,j εi,j|φ)P0(dφ) if h = hnew

Finally, when P0 is conjugate with respect to the Gaussian kernel, the full conditional

distribution of φ∗∗h is obtained in closed form as posterior distribution of a Gaussian model,

using as observations the collection { (si,j εi,j) : hti,j ,j = h}.
Sampling θ. When sampling the disease-specific location parameters, one can rely

on a Chinese restaurant process restricted to those partitions that are consistent with
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the ordering of the diseases. Thus, in order to generate θ, we first sample the labels tθ =

{t1, . . . , tJ}, where tj is the label of the table where the j-th customer sits. Then, we sample

the dish θ∗t associated to table t for all t ∈ tθ. If zi,j = Xi,j− ξi,j, the conditional density of

zj = (z1,j, . . . , znj ,j) associated to the location parameter θ∗, given σj = (σ1,j, . . . , σnj ,j), is

fθ∗(zj|σj) =
1

√
2π

nj∏
i=1

σi,j

exp

{
−1

2

nj∑
i=1

(zi,j − θ∗)2

σ2
i,j

}

Under the prior in (9), the full conditional distribution of tθ is provided by

p(tj = t | t1, . . . ,tj−1, θj−1, zj,σj)

∝


a(ω, θ1, . . . , θj−1) fθj−1

(zj|σj) if t = tj

[1− a(ω, θ1, . . . , θj−1)]

∫
fθ(zj|σj)G(dθ) if t = tnew

0 otherwise

Finally, when G is conjugate with respect to the Gaussian kernel, the full conditional

distribution of θ∗t , given {zj : tj = t}, is obtained in closed form using conjugacy of the

Normal-Normal model.

Sampling the concentration parameter. Finally, the concentration parameter ω

can be sampled through an importance sampling step using as importance distribution the

prior pω over ω. Denoting with Mm the selected partition for θm and with Tm the number

of clusters in Mm, we have

p(ω |Mm : m = 1, . . . ,M) ∝ pω(ω)
ω
∑M

m=1 Tm−M

(ω + 2)M(ω2 + ω + 3)M
.

5 Results

5.1 Simulation studies

We perform a series of simulation studies with two main goals. First, we aim to highlight

the drawbacks of clustering based on the entire distribution with respect to our proposal

in the context of small sample sizes. Second, we check the model’s ability of detecting the

presence of underlying relevant factors in the sense described in Section 2.2.

To accomplish the first goal, we compare the results obtained using our model with

the nested Dirichlet process (NDP) (Rodriguez et al., 2008), arguably the most popular

Bayesian model to cluster populations. Mimicking the real hypertensive dataset, we simu-

late data for 4 samples, ideally corresponding to four diseases, with respective sample sizes

of 50, 19, 9 and 22, which correspond to the sample sizes of the real data investigated in

Section 5.2. Since the NDP does not allow to treat jointly multiple response variables,

we consider only one response variable to ensure a fair comparison. The observations are
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Table 1: Simulation studies summaries.

sHDP NDP

MAP Average Median MAP Average Median
Partitions count post. prob. post. prob. count post. prob. post. prob.
{1,2,3,4} 0 0.000 0.000 0 0.000 0.000
{1}{2,3,4} 0 0.000 0.000 2 0.020 0.000
{1,2}{3,4} 0 0.000 0.000 72 0.695 0.860
{1,3,4}{2} 0 0.000 0.000 0 0.000 0.000
{1}{2}{3,4} 0 0.027 0.007 3 0.035 0.000
{1,2,3}{4} 0 0.000 0.000 5 0.061 0.000
{1,4}{2,3} 0 0.000 0.000 0 0.000 0.000
{1}{2,3}{4} 1 0.054 0.015 0 0.014 0.000
{1,3}{2,4} 0 0.000 0.000 0 0.000 0.000
{1,2,4}{3} 0 0.000 0.000 0 0.000 0.000
{1}{2,4}{3} 0 0.000 0.000 0 0.000 0.000
{1,2}{3}{4} 0 0.004 0.000 18 0.175 0.032
{1,3}{2}{4} 0 0.000 0.000 0 0.000 0.000
{1,4}{2}{3} 0 0.000 0.000 0 0.000 0.000
{1}{2}{3}{4} 99 0.915 0.954 0 0.000 0.000

sampled from the following distributions and 100 simulation studies are performed.

Xi,1
iid∼ 0.5N ( 0, 0.5 ) + 0.5N ( 2, 0.5 ) for i = 1, . . . , n1

Xi,2
iid∼ 0.5N ( 2, 0.5 ) + 0.5N ( 4, 0.5 ) for i = 1, . . . , n2

Xi,3
iid∼ 0.5N ( 4, 0.5 ) + 0.5N ( 6, 0.5 ) for i = 1, . . . , n3

Xi,4
iid∼ 0.5N ( 6, 0.5 ) + 0.5N ( 8, 0.5 ) for i = 1, . . . , n4

Note that the true data generating process corresponds to samples from distinct distribu-

tions with pairwise sharing of a mixture component. Alternative scenarios are considered

in the additional simulation studies that can be found in Section D of the Supplement.

The implementation of the NDP was carried out through the marginal sampling scheme

proposed in Zuanetti et al. (2018), which is suitably extended to accommodate hyperpriors

on the concentration parameters of the NDP. To simplify the choice of the hyperparameters,

as suggested by Gelman et al. (2013, p. 535 and p. 551–554) we estimate both models over

standardized data. For our model, we set Gm = N (0, 1) and P0,m = NIG(µ = 0, τ =

1, α = 2, β = 4). Here, NIG(µ, τ, α, β) indicates a normal inverse gamma distribution.

The base distribution for the NDP is NIG(µ = 0, τ = 0.01, α = 3, β = 3), as in Rodriguez

et al. (2008). Finally, we use gamma priors with shape 3 and rate 3 for all concentration

parameters, which is a common choice. For each simulation study, we perform 10,000

iterations of the MCMC algorithms with the first 5,000 used as burn-in.

Table 1 displays summaries of the results on population clustering, darker rows cor-

respond to partitions that are not consistent with the natural ordering of the diseases.

The true clustering structure is given by the finest partition. As already observed in Ro-
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(a) 95% credible intervals for population-
specific locations

(b) Number of second-level clusters.

(c) Co-clustering. (d) Co-clustering.

Figure 3: Panel (a): Mean point estimates and 95% credible intervals for the four popu-
lations, vertical lines correspond to true values. Panel (b): Posterior distribution on the
number of second-level clusters. Panels (c) and (d): heatmaps of second-level clustering,
darker colors correspond to higher probability of co-clustering; in (c) patients are ordered
based on the diagnosis and the four black squares highlight the within-sample probabilities
and in (d) patients are reordered based on co-clustering probabilities.

driguez et al. (2008), the NDP tends to identify fewer, rather than more clusters, due to

the presence of small sample sizes. Using the maximum a posteriori estimate, our model

correctly identifies the partition in 99 out of 100 simulation studies and a partition with

three elements or more in 100 out of 100 simulation studies. The same counts for the NDP

are, respectively, 0 out of 100 and 21 out of 100. Analogous conclusions can be drawn

looking at posterior probability averages and medians across the 100 simulation studies

(see Table 1) leaving no doubt about the model to be preferred under this scenario.

Finally, we randomly select three simulation studies among the 100 to better understand

the performance in estimating the other model parameters. Here we comment on one of the

studies, the other two leading to similar results are reported in Section D.1.1 of the Sup-

plement. Figure 3a shows point estimates and credible intervals for the population-specific

location parameters θ1, θ2, θ3, θ4. The true means belong to the 95% credible intervals.

Moreover, it turns out that the model is able to detect the presence of two clusters

of subjects leading to a posterior distribution for the number of clusters that is rather
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concentrated on the true value, see Figure 3b–3d. Moreover, the point estimate for the

subject partition, obtained minimizing the Binder loss function, also contains two clusters,

proving the ability of the model to detect the underlying relevant factor. In Section D

of the Supplement, a number of additional simulation studies are conducted, both using

alternative specifications over the disorder-specific parameters and different data generating

mechanisms: the results highlight a good performance of the model, which appears also

able to detect outliers, to highlight non-location effects of the disorders and to produce

reliable outputs even under deviation from symmetry.

5.2 Impact of hypertensive disorders on maternal cardiac dys-

function

Our analysis is based on the dataset of Tatapudi and Pasumarthy (2017a), which can

be obtained from https://data.mendeley.com/datasets/d72zr4xggx/1. The dataset con-

tains observations for 10 cardiac function measurements collected through a prospective

case-control study on women in the third semester of pregnancy divided in n1 = 50 con-

trol cases (C), n2 = 19 patients with gestational hypertension (G), n3 = 9 patients with

mild preeclampsia (M) and n4 = 22 patients with severe preeclampsia (S). The cases are

women admitted from 2012 to 2014 to King George Hospital in Visakhapatnam, India.

The healthy sample is composed by normotensive pregnant women. All women with hy-

pertension were on antihypertensive treatment with oral Labetalol or Nifedipine. Women

with severe hypertension were treated with either oral nifedipine and parenteral labetalol

or a combination. For more details on the dataset, we refer to Tatapudi and Pasumarthy

(2017b). The prior specification is the same as in the previous section. Sections E.2 and

E.3 of the Supplement contain a prior-sensitivity analysis and show rather robust results

w.r.t. different prior specifications. Inference is based on 10,000 MCMC iterations with

the first half used as burn-in.

Table 2 displays the posterior distributions for the partitions of unknown disease-specific

means along with the corresponding entropy measurements, that can be used as measures

of uncertainty. First note that if one takes also the ordering among distinct disease-specific

locations into account, the posterior partition probabilities are, as desired, concentrated

on specific orders of the associated unique values for all ten cardiac indexes. For instance,

we have P({θC,CI = θG,CI = θM,CI}{θS,CI} | X) = P(θC,CI = θG,CI = θM,CI > θS,CI |
X) = 0.463. The ordered partitions with the highest posterior probability are displayed in

Table 3.

Considering the posterior probabilities summarized in Table 2 and in Table 3, we find

that the cardiac index (CI) is reduced in severe preeclampsia compared to all other pa-

tients, indicating reduced myocardial contractility in the presence of the most severe dis-

order. The cardiac work index (CWI) is a good indicator to distinguish between cases and

control, but not among cases. The left ventricular mass index (LVMI) is increased in severe

preeclampsia patients compared to other pregnant women, indicating ventricular remod-

elling. While inter ventricular septal thickness (IVST) and left ventricular posterior wall

thickness (LVPW) differ both between cases and controls and between severe preeclampsia

and other disorders, indicating a progressive increase in the indexes with the severity of
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Table 2: Posterior probabilities over partitions of means. Maximum a posteriori probabil-
ities are in bold.

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A

{C,G,M,S} 0.021 0.000 0.000 0.000 0.000 0.365 0.303 0.096 0.000 0.000
{C}{G,M,S} 0.002 0.546 0.001 0.083 0.016 0.078 0.190 0.021 0.036 0.000
{C,G}{M,S} 0.002 0.000 0.001 0.000 0.000 0.037 0.038 0.072 0.076 0.049
{C,M,S}{G} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G}{M,S} 0.001 0.139 0.001 0.019 0.024 0.028 0.078 0.042 0.232 0.055
{C,G,M}{S} 0.463 0.000 0.595 0.000 0.000 0.276 0.045 0.498 0.020 0.002
{C,S}{G,M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G,M}{S} 0.146 0.099 0.188 0.551 0.672 0.074 0.164 0.092 0.260 0.033
{C,M}{G,S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,G}{M}{S} 0.233 0.000 0.107 0.000 0.000 0.083 0.062 0.114 0.091 0.371
{C,M}{G}{S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,S}{G}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G}{M}{S} 0.133 0.216 0.108 0.347 0.288 0.060 0.121 0.065 0.287 0.491∑

log15

(
p−pii

)
0.501 0.430 0.415 0.361 0.289 0.632 0.688 0.598 0.613 0.424

Table 3: Posterior probabilities over ordered partitions of means.

ordered partition with
cardiac index highest posterior probability posterior prob

CI {C,G,M}>{S} 0.463
CWI {C}<{G,M,S} 0.546
LVMI {C,G,M}<{S} 0.595
IVST {C}<{G,M}<{S} 0.548
LVPW {C}<{G,M}<{S} 0.671
EF {C,G,M,S} 0.365
FS {C,G,M,S} 0.303
EW {C,G,M}>{S} 0.497
AW {C}<{G,M}<{S} 0.256
E/A {C}>{G}>{M}>{S} 0.466

Figure 4: 95% credible intervals for population-specific locations for CI and CWI
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Table 4: Posterior probabilities over partitions of means. Maximum a posteriori probabil-
ities are in bold.

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A

{C,G,M,S} 0.019 0.000 0.000 0.000 0.000 0.332 0.247 0.078 0.000 0.000
{C}{G,M,S} 0.002 0.643 0.001 0.114 0.031 0.065 0.130 0.048 0.080 0.000
{C,G}{M,S} 0.004 0.000 0.003 0.000 0.000 0.044 0.019 0.152 0.073 0.103
{C,M,S}{G} 0.004 0.000 0.000 0.000 0.000 0.037 0.105 0.013 0.000 0.000
{C}{G}{M,S} 0.002 0.065 0.002 0.047 0.078 0.027 0.036 0.063 0.424 0.167
{C,G,M}{S} 0.316 0.000 0.527 0.000 0.000 0.178 0.032 0.288 0.002 0.000
{C,S}{G,M} 0.023 0.000 0.000 0.000 0.000 0.019 0.103 0.006 0.000 0.000
{C}{G,M}{S} 0.173 0.089 0.124 0.472 0.594 0.033 0.054 0.064 0.140 0.042
{C,M}{G,S} 0.002 0.000 0.001 0.003 0.000 0.044 0.031 0.017 0.000 0.000
{C,G,S}{M} 0.018 0.000 0.000 0.000 0.000 0.061 0.067 0.016 0.000 0.000
{C}{G,S}{M} 0.005 0.163 0.001 0.095 0.006 0.028 0.040 0.015 0.016 0.000
{C,G}{M}{S} 0.213 0.000 0.124 0.000 0.000 0.052 0.014 0.121 0.036 0.241
{C,M}{G}{S} 0.074 0.000 0.137 0.003 0.000 0.041 0.022 0.055 0.001 0.000
{C,S}{G}{M} 0.014 0.000 0.000 0.000 0.000 0.011 0.067 0.004 0.000 0.000
{C}{G}{M}{S} 0.133 0.040 0.079 0.265 0.291 0.029 0.033 0.059 0.229 0.448∑

log15

(
p−pii

)
0.687 0.407 0.509 0.501 0.371 0.828 0.886 0.823 0.582 0.505

the disorder. The posterior probabilities associated to indexes of systolic function such

as ejection fraction (EF) and fraction shortening (FS) are relatively concentrated on the

partition of complete homogeneity, letting us to conclude that no differences are present

among patients. As for the parameters of the diastolic function, the posterior distribu-

tion for the E-wave indicator identifies a modified index in severe preeclampsia patients,

while the mean E/A ratio indicates a decreasing diastolic function with the severity of the

disorder. The posterior for the A-wave index is actually concentrated on three distinct

partitions, leaving a relatively high uncertainty regarding the modifications of the index.

However, considering jointly the three partitions with the highest posterior probability,

differences are detected between control and cases with a total posterior probability equal

to 0.779. Figure 4 shows point estimates and credible intervals for disorder-specific location

parameters for the first two cardiac indexes. Analogous plots for all cardiac indexes can

be found in Section E.1 of the Supplement.

Table 4 shows the results obtained using the prior in (7), instead of (8). We remark

that for all ten cardiac indexes, the posterior associates negligible probabilities to partitions

that are in contrast with the natural order of the diagnoses. This is particularly reassuring

in that the model, even without imposing such an order a priori, is able to single it out

systematically across cardiac indexes. Moreover, we observe how the partitions identified

by MAP are the same of Table 2 for all cardiac index except AW. However, even under this

alternative prior, the A-wave index is concentrated on the same three distinct partitions

leading to the conclusion that there exists a difference between cases and control.

As far as prediction and second-level clustering are concerned, Figure 5 displays the

density estimates and the heatmap of co-clustering probabilities between pairs of patients

for the E/A ratio and LVMI. Figure 5b shows that co-clustering probabilities are similar

within and across diagnoses, indicating that the effect of the diseases on the distribution

of the cardiac index is mostly explained through shifts between disease-specific locations.
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(a) density estimation
(b) co-clustering (c) co-clustering

(d) density estimation
(e) co-clustering (f) co-clustering

Figure 5: Panels (a) and (d): density estimates. Panels (b)–(c) and (e)–(f): heatmaps of
the posterior probabilities of co-clustering; in (b) and (e) patients are ordered based on the
diagnosis and the four black squares highlight the within-sample probabilities; in (c) and
(f) patients are reordered based on co-clustering probabilities.

Moreover Figure 5b suggests the presence of three outliers that have low probability of

co-clustering with all the other subjects and that would be ignored by the model using

a more traditional ANOVA structure. On the other hand, Figure 5e shows a slightly

different pattern for co-clustering probabilities in the fourth square, which suggests that the

heterogeneity between severe preeclampsia patients and the other patients is not entirely

explained by shifts in disease-specific locations. Finally, Figure 5f suggests the presence

of an underlying relevant factor. The corresponding figures for all ten response variables

are reported in Section E.1 of the Supplement and can be used for prediction and for a

graphical analysis aimed at controlling the presence of underlying relevant factors, outliers

and differences across diseases distinct from shifts between disease-specific locations.

Our results are coherent with almost all of the findings in Tatapudi and Pasumarthy

(2017b), where results were obtained through a series of independent frequentist tests.

However, importantly, we are able to provide more insights thanks to the simultaneous

comparison approach and the latent clustering of subjects. For instance, considering the

response LVMI, Tatapudi and Pasumarthy (2017b) detected a significant increase in cases

compared to controls and an increase in severe preeclampsia compared to gestational hyper-

tensive and mild preeclampsia patients. Such results do not clarify whether a modification

exists between the control group and gestational hypertensive patients or between the lat-

ter and mild preeclampsia patients. Moreover, in contrast to our analysis, their results

do not provide any information concerning the presence of underlying common factors,

outliers or distributional effects (different from shifts in locations).

20



6 Concluding remarks

We designed a Bayesian nonparametric model to detect clusters of hypertensive disorders

over different cardiac function indexes and found modified cardiac functions in hypertensive

patients compared to healthy subjects as well as progressively increased alterations with

the severity of the disorder. The proposed model has application potential also beyond

the considered setup when the goal is to cluster populations according to multivariate in-

formation: it borrows strength across response variables, preserves the flexibility intrinsic

to nonparametric models, and correctly detects partitions of populations even in presence

of small sample sizes, when alternative distribution-based clustering models tend to un-

derestimate the number of clusters. The key component of the model is the s-HDP, a

hierarchical nonparametric structure for the error terms that offers flexibility and serves

as a tool to investigate the presence of unobserved factors, outliers and effects other than

changes in locations. Interesting extensions of the model include generalizations to other

types of invariances in order to accommodate identifiability in generalized linear models,

for instance in presence of count data and a log link function, as well as generalizations to

other types of processes, beyond the Dirichlet process.
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I
Supplement to Model Selection for Maternal Hypertensive

Disorders with Symmetric Hierarchical Dirichlet Processes

A A review of the invariant Dirichlet process

We provide a brief review of the invariant Dirichlet process (IDP), introduced by Dalal (1979a),
which serves as building block for the proposed model. After recalling the definition, we present two
representations of the process: the first is the analog of the stick-breaking construction of the Dirichlet
Process (DP), whereas the second is an extension of the generalized Pólya urn scheme of Blackwell
and MacQueen (1973).

Let (E, E) be any measurable Euclidean space and G = {g1, . . . , gL} be a finite group of measurable
transformations on (E, E).

Definition A.1 (Invariant Probability). A probability measure P0 on (E, E) is a G-invariant probability
distribution, if P0(A) = P0(gl(A)), for any A ∈ E and l = 1, . . . , L.

Definition A.2 (Invariant Random Probability). A random probability p̃ on (E, E) is said G-invariant,
if it is almost surely G-invariant.

Definition A.3 (Invariant Partition). A measurable partition A1, A2, . . . , AK of E is a G-invariant
partition, if Ak = gl(Ak), ∀k = 1, . . . ,K and ∀l = 1, . . . , L.

Definition A.4 (Invariant Dirichlet Process). A random probability p̃ is an IDP with group of trans-
formations G, if

1. p̃ is almost surely G-invariant

p̃(A) = p̃(gl(A)) for l = 1, . . . , L a.s.

2. there exists a G-invariant probability distribution P0 on (E, E) and α ∈ R+, such that for any
k ∈ N and any G-invariant measurable partition A1, . . . , Ak(

p̃(A1), . . . , p̃(Ak)
)
∼ Dk−1(αP0(A1), . . . , α P0(Ak))

where α is the concentration parameter and P0 the baseline probability measure.

The notation p̃ ∼ IDP(α, P0, G) indicates that the random measure p̃ is distributed according to an
IDP. Note that, if p̃ ∼ DP(α, P0), then p̃ is not an IDP, since it is not an invariant random probability.
Vice versa, if p̃ ∼ IDP(α, P0, G), then p̃ is not a DP, since its finite dimensional distributions over
non G-invariant partitions are not Dirichlet. However there is a strong relationship between the two
processes as shown in Dalal (1979a).

Theorem A.5 (Dalal, 1979a). Let q̃ ∼ DP(α, P0) and p̃ ∼ IDP(α, P0, G). Define

q∗(·) =
1

L

L∑
l=1

q̃(gl(· · · ))

then
p̃

d
= q∗

Tiwari (1988) provided also a constructive definition for the IDP, which is the analogue of the
stick-breaking representation of Sethuraman (1994) for the DP.

Proposition A.6 (Tiwari, 1988). If p̃ ∼ IDP(α, P0, G), then

p̃ =
∞∑
h=1

πh

L∑
l=1

δgl(φ∗h)
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P[{θ1, θ2, θ3, θ4}] ∝ 3!

P[{θ1, θ2, θ3}, {θ4}] ∝ 2!ω

P[{θ1, θ2}, {θ3, θ4}] ∝ ω

P[{θ1, θ2}, {θ3}, {θ4}] ∝ ω2

P[{θ1}, {θ2, θ3, θ4}] ∝ 2!ω

P[{θ1}, {θ2, θ3}, {θ4}] ∝ ω2

P[{θ1}, {θ2}, {θ3, θ4}] ∝ ω2

P[{θ1}, {θ2}, {θ3}, {θ4}] ∝ ω3

P[θ1 = θ2 = θ3]
∝ 2!ω + 3!

P[θ1 = θ2 6= θ3]
∝ ω2 + ω

P[θ1 6= θ2 = θ3]
∝ ω2 + 2!ω

P[θ1 6= θ2 6= θ3]
∝ ω3 + ω2

P[θ1 = θ2]
∝ ω2 + 3ω + 3!

P[θ1 6= θ2]
∝ ω3 + 2ω2 + 2ω

Figure 6: A priori partitions’ probabilities joint (on the left) and marginals

with πh =
π′h
L

h−1∏
r=1

(1− π′r) π′r ∼ Beta(1, α) φ∗h
iid∼ P0.

Moreover, if φi | Q̃
iid∼ Q̃ with Q̃ ∼ IDP(α, P0, G), by integrating out Q̃, we get the corresponding

generalized Pólya urn representation for the process

φ1 ∼ P0

φi | φ1, . . . φi−1 ∼
i−1∑
j=1

1

i− 1 + α

(
1

L

L∑
l=1

δgl(φj)

)
+

α

i− 1 + α
P0

For more details about IDPs we refer to Dalal (1979a), Dalal (1979b), Hannum and Hollander (1983),
Doss (1984), Diaconis and Freedman (1986), Tiwari (1988), Ferguson, Phadia, and Tiwari (1992) and
Ghosal et al. (1999).

B Predictive distribution for disease-specific locations

We recall that the prior over partitions is given by

P(Mm
b | ω) ∝

{
ωk−1

∏k
i=1(ni − 1)! if Mm

b is compatible with the natural order

0 otherwise

where k is the number of distinct clusters according to the partition Mm
b and n1, . . . , nk are the clusters’

frequencies. Thus, being J = 4, one obtains the probabilities in Figure 6, starting from which it is
possible to compute the joint distribution of (θ1,m, . . . , θ4,m) conditional on ω

θ1,m | ω ∼ Gm

θ2,m | θ1,m, ω ∼
ω2 + 3ω + 6

(ω + 2)(ω2 + ω + 3)
δθ1,m +

ω3 + 2ω2 + 2ω

(ω + 2)(ω2 + ω + 3)
Gm

θ3,m | θ1,m, θ2,m, ω ∼
{

2ω+6
ω2+3ω+6

δθ2,m + ω2+ω
ω2+3ω+6

Gm if θ1,m = θ2,m
ω+2

ω2+2ω+2
δθ2,m + ω2+ω

ω2+2ω+2
Gm if θ1,m 6= θ2,m

θ4,m | θ1,m, θ2,m, θ3,m, ω ∼


3

ω+3
δθ3,m + ω

ω+3
Gm if θ1,m = θ2,m = θ3,m

2
ω+2

δθ3,m + ω
ω+2

Gm if θ1,m 6= θ2,m = θ3,m
1

ω+1
δθ3,m + ω

ω+1
Gm otherwise
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C Alternative priors over disorder-specific locations

For comparison purposes and prior sensitivity analysis we consider also two alternative priors over
the disorder-specific locations: a uniform prior, which does not penalize multiplicity but incorporates
the prior information on the severity of disorders, and a mixture of Dirichlet processes (DPs), which
penalizes for multiplicity but does not reflect prior information.

C.1 Uniform prior

The uniform prior is obtained associating zero-probability to nonsensical partitions and a uniform
prior over the remaining, i.e.

P(Mm
b ) ∝

{
1
8

if Mm
b is compatible with the natural order

0 otherwise

The predictive distributions are

θj |θ1, . . . , θj−1 ∼
1

2
δθj−1

+
1

2
G

and the full conditional distribution of tj is

p(tj = t | t(−j)θ ,θ(−j), zj,σj) ∝


fθj−1

(zj|σj) if t = tj−1∫
fθ(zj|σj)G(dθ) if t = tnew

Note that with this prior there is not a common concentration parameter and therefore there is no
borrowing of information across cardiac indexes as well as no Occam’s razor effect.

C.2 Mixture of DPs prior

Using mixtures of DPs as prior, the locations (θ1, . . . , θJ), conditionally on ω, are from a DP and
the law of the partition (described in Section 2.1 of the main paper) yields the well-known predictive
distributions

θj |ω, θ1, . . . , θj−1 ∼
Tj−1∑
t=1

nt
j − 1 + ω

δθ∗t +
ω

j − 1 + ω
G

with Tj−1 the number of distinct values θ∗t in (θ1, . . . , θj−1) and nt = card{i ∈ {1, . . . , j−1} : θi = θ∗t }.
From this, one easily deduces that the conditional prior odds against two populations sharing the
same location is

P(θj,m 6= θj′m | ω)

P(θj,m = θj′m | ω)
=

Π
(2)
2 (1, 1)

Π
(2)
1 (2)

= ω

Under the mixture of DP prior, the full conditional distribution of tj is

p(tj = t | t(−j)θ ,θ∗(−j), zj,σj) ∝


n−jt fθ∗t (zj|σj) if t ∈ t(−j)

ω

∫
fθ(zj|σj)G(dθ) if t = tnew

where t(−j) = {tj′ : j′ 6= j}, θ∗(−j) = {θ∗t : t ∈ t(−j)} and n−jt denotes the number of customers already
allocated to table t, after removing the j-th customer.

Moreover, if the prior pω for the concentration parameter is chosen to be gamma with shape a
and rate b, the full conditional for the parameter ω can be obtained by generalizing the result for a
single mixture of DPs in Escobar and West (1995), as follows. Denote with Tm the number of distinct
values of θm = {θ1,m, . . . , θd,m}, for m = 1, . . . ,M and note that ω depends on the data only through
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T1, . . . , TM . The full conditional distribution of ω is:

p(ω | T1, . . . , TM) ∝ pω(ω) ·
M∏
m=1

p(Tm | ω)

∝ pω(ω) ·
M∏
m=1

[
cd(Tm) d!ωTm

Γ(ω)

Γ(ω + d)

]

where pω(ω) is the prior density of ω and cd(Tm) = p(Tm | ω = 1). Therefore

p(ω | T1, . . . , Tm) ∝ pω(ω) · ω
∑

m Tm−M (ω + d)M
M∏
m=1

 1∫
0

uω(1− u)d−1du


Defining M auxiliary random variables um for m = 1, . . . ,M such that um | ω

iid∼ Beta(ω + 1, d). It
follows that

p(ω, u1, . . . , uM | T1, . . . , Tm) ∝ pω(ω) · ω
∑

m Tm−M (ω + d)M
M∏
m=1

uωm
M∏
m=1

(1− um)d−1

Finally if pω ≡ Gamma(a, b), then

p(ω | u1, . . . , uM , T1, . . . , Tm) ∝ ωa+
∑

m Tm−M−1 (ω + d)M exp

{
−ω(b−

M∑
m=1

log(um))

}

∝
M∑
v=0

(
M

v

) dv Γ

(
a+

M∑
m=1

Tm − v
)

(
b−

M∑
m=1

log(um)

)a+ M∑
m=1

Tm−v
×Gamma

(
a+

M∑
m=1

Tm − v, b−
M∑
m=1

log(um)

)

so that the conditional distribution of ω is a mixture of M + 1 Gamma distributions. The sampling
of ω becomes

(i) Sample um, for m = 1, . . . ,M , independently from a Beta(ω + 1, J), where J is the number of
populations.

(ii) Sample vω from

p(vω = v |u1, . . . , um) =

(
M

v

)
dv Γ

(
a+

M∑
m=1

Tm − v
) (

b−
M∑
m=1

log(um)
)v

for v ∈ {0, . . . ,M}, where Tm is the number of distinct values in θm, for m = 1, . . . ,M .

(iii) Sample ω from Gamma
(
a+

∑M
m=1 Tm − v, b−

∑M
m=1 log(um)

)
.

D Additional simulations studies

This section provides additional results obtained from simulation studies. It is divided in four sub-
sections based on the data generating process (DGP) used to simulate observations.
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D.1 Generating mechanism with underlying relevant factor

The DGP used in this sub-section is the same considered in Section 5.1 of the main paper, i.e.

Xi,1
iid∼ 0.5N ( 0, 0.5 ) + 0.5N ( 2, 0.5 ) for i = 1, . . . , n1

Xi,2
iid∼ 0.5N ( 2, 0.5 ) + 0.5N ( 4, 0.5 ) for i = 1, . . . , n2

Xi,3
iid∼ 0.5N ( 4, 0.5 ) + 0.5N ( 6, 0.5 ) for i = 1, . . . , n3

Xi,4
iid∼ 0.5N ( 6, 0.5 ) + 0.5N ( 8, 0.5 ) for i = 1, . . . , n4

D.1.1 Inferential results from two additional randomly selected studies

In Figures 7 and 8 below, we display the plots regarding the inference for two additional randomly
selected simulation studies among the 100 of Section 5.1. Like for the simulation study already
discussed in Section 5.1, the true means belong to the 95% credible intervals and the model correctly
identifies the two clusters.

(a) Inference on location parameters (b) Number of second-level clusters.

(c) Co-clustering. (d) Co-clustering.

Figure 7: Panel (a): Results of the 37th simulation study. Mean point estimates and 95%
credible intervals for the four populations, vertical lines correspond to true values. Panel (b):
Posterior distribution on the number of second-level clusters. Panels (c) and (d): heatmaps of
second level clustering, darker colors correspond to higher probability of co-clustering; in (c)
patients are ordered based on the diagnosis and the four black squares highlight the within-
sample probabilities and in (d) patients are reordered based on co-clustering probabilities.
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(a) Inference on location parameters (b) Number of second-level clusters.

(c) Co-clustering. (d) Co-clustering.

Figure 8: Results of the 9th simulation study. Panel (a): Mean point estimates and 95% credible
intervals for the four populations, vertical lines correspond to true values. Panel (b): Posterior
distribution on the number of second-level clusters. Panels (c) and (d): heatmaps of second
level clustering, darker colors correspond to higher probability of co-clustering; in (c) patients
are ordered based on the diagnosis and the four black squares highlight the within-sample
probabilities and in (d) patients are reordered based on co-clustering probabilities.
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D.1.2 Inference results with alternative priors

Below we display the results obtained on the simulated data of Section 5.1 of the main paper using
the alternative priors described in Section C.

Table 5: Simulation studies summaries.

sHDP-with mixture of DPs sHDP-with unifor prior

MAP Average Median MAP Average Median

Partitions count post. prob. post. prob. count post. prob. post. prob.

{1,2,3,4} 0 0.000 0.000 0 0.000 0.000

{1}{2,3,4} 0 0.000 0.000 0 0.000 0.000

{1,2}{3,4} 0 0.000 0.000 0 0.000 0.000

{1,3,4}{2} 0 0.000 0.000 0 0.000 0.000

{1}{2}{3,4} 5 0.083 0.022 0 0.030 0.009

{1,2,3}{4} 0 0.000 0.000 0 0.001 0.000

{1,4}{2,3} 0 0.000 0.000 0 0.000 0.000

{1}{2,3}{4} 2 0.056 0.012 1 0.051 0.014

{1,3}{2,4} 0 0.000 0.000 0 0.000 0.000

{1,2,4}{3} 0 0.000 0.000 0 0.000 0.000

{1}{2,4}{3} 0 0.000 0.000 0 0.000 0.000

{1,2}{3}{4} 0 0.002 0.000 0 0.003 0.000

{1,3}{2}{4} 0 0.000 0.000 0 0.000 0.000

{1,4}{2}{3} 0 0.000 0.000 0 0.000 0.000

{1}{2}{3}{4} 93 0.859 0.918 99 0.916 0.956

Both models perform better than the NDP, whose results are in Table 1 of the main paper, confirm-
ing the advantages of location-based clustering in presence of small sample sizes, when compared to
distribution-based clustering. Moreover, sHDP-with mixture of DPs has a slightly worse performance
with respect to our main proposal; this was expected, since the corresponding prior incorporates less
information and ignores the natural order of the four populations.

D.2 Generating mechanism with outliers

We present here a simulation study with a twofold goal: (1) compare again the location–based cluster-
ing approach of our proposal with the distribution–based clustering approach of the nested Dirichlet
process (NDP) under a different DGP; (2) study the performance of our model in presence of outliers.
The simulated data have been sampled according to the following DGP

DGP 1: Xi,1
iid∼ N ( 0, 0.5 ) for i = 1, . . . , n1 − 1

Xn1,1 ∼ N ( 4, 0.5 )

Xi,2
iid∼ N ( 1, 0.5 ) for i = 1, . . . , n2

Xi,3
iid∼ N ( 1, 0.5 ) for i = 1, . . . , n3

Xi,4
iid∼ N ( 2, 0.5 ) for i = 1, . . . , n4

Thus, the true partition is {1}, {2, 3}, {4}. Moreover, there is one outlier in the first sample.
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Table 6: Posterior probabilities over the space of partitions.

s-HDP NDP

{1,2,3,4} 0 0

{1}{2,3,4} 0 0

{1,2}{3,4} 0 0

{1,3,4}{2} 0 0

{1}{2}{3,4} 0 0

{1,2,3}{4} 0.013 0.980

{1,4}{2,3} 0 0

{1}{2,3}{4} 0.771 0.010

{1,3}{2,4} 0 0

{1,2,4}{3} 0 0

{1}{2,4}{3} 0 0

{1,2}{3}{4} 0.006 0.020

{1,3}{2}{4} 0 0

{1,4}{2}{3} 0 0

{1}{2}{3}{4} 0.210 0

Table 6 displays the posterior probabilities obtained using our model (s-HDP) and the NDP. Our
model largely outperforms the competitor.

(a) Co-clustering. (b) Co-clustering.

Figure 9: Posterior similarity matrices for the simulation study under DGP 1. In (a) patients
are ordered based on the diagnosis and the four black squares highlight the within-sample
probabilities; in (b) patients are reordered based on co-clustering probabilities.

Figure 9 shows the posterior co-clustering probabilities obtained in the simulations study. Our
proposal is able to correctly identify the outlier.

D.3 Generating mechanism with non-location effects

We present a simulation study with a twofold goal: (1) compare again the location–based cluster-
ing approach of our proposal with the distribution–based clustering approach of the nested Dirichlet
process (NDP) under a different DGP; (2) study the performance of our model for the case of hetero-
geneity between populations not being fully explained by shift in locations. The simulated data have
been sampled according to the following DGP.
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DGP 2: Xi,1
iid∼ 0.5N (−1, 0.5 ) + 0.5N ( 1, 0.5 ) for i = 1, . . . , n1

Xi,2
iid∼ N ( 1, 0.5 ) for i = 1, . . . , n2

Xi,3
iid∼ N ( 1, 0.5 ) for i = 1, . . . , n3

Xi,4
iid∼ N ( 2, 0.5 ) for i = 1, . . . , n4

Thus, the true partition is {1}, {2, 3}, {4}. Moreover, the relative effect of the first population w.r.t. the
others is not fully explained by the shift of the location, since the whole distribution is different and
not only the mean. Table 7 displays the posterior probabilities obtained using our model (s-HDP) and
the NDP. Our model largely outperforms the competitor. Figure 10 shows the posterior co-clustering
probabilities. Our proposal is able to correctly identify the non–location effect (see Figure 10(a)).

Table 7: Posterior probabilities over the space of partitions.

s-HDP NDP

{1,2,3,4} 0 0

{1}{2,3,4} 0.001 0

{1,2}{3,4} 0 0

{1,3,4}{2} 0 0

{1}{2}{3,4} 0.001 0

{1,2,3}{4} 0.058 0.98

{1,4}{2,3} 0 0

{1}{2,3}{4} 0.706 0.01

{1,3}{2,4} 0 0

{1,2,4}{3} 0 0

{1}{2,4}{3} 0 0

{1,2}{3}{4} 0.019 0.02

{1,3}{2}{4} 0 0

{1,4}{2}{3} 0 0

{1}{2}{3}{4} 0.214 0

(a) Co-clustering. (b) Co-clustering.

Figure 10: Posterior similarity matrices for the simulation study under DGP 2. In (a) patients
are ordered based on the diagnosis and the four black squares highlight the within-sample
probabilities; in (b) patients are reordered based on co-clustering probabilities.
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D.4 Simulation studies under non-symmetric data generating pro-

cess

Here we report three simulation studies to check the performance of the model in presence of deviations
from symmetry. The simulated data have been sampled according to the following DGPs.

DGP 3: Xi,1
iid∼ N (0, 0.5 ) for i = 1, . . . , n1

Xi,2
iid∼ Gamma( 3, 3) for i = 1, . . . , n2

Xi,3
iid∼ N ( 1, 0.5 ) for i = 1, . . . , n3

Xi,4
iid∼ N ( 2, 0.5 ) for i = 1, . . . , n4

DGP 4: Xi,1
iid∼ 0.7N (−1, 0.5 ) + 0.3N ( 1, 0.5 ) for i = 1, . . . , n1

Xi,2
iid∼ N ( 1, 0.5 ) for i = 1, . . . , n2

Xi,3
iid∼ N ( 1, 0.5 ) for i = 1, . . . , n3

Xi,4
iid∼ N ( 2, 0.5 ) for i = 1, . . . , n4

DGP 5: Xi,1
iid∼ Gamma( 10, 10) for i = 1, . . . , n1

Xi,2
iid∼ Gamma( 10, 10) for i = 1, . . . , n2

Xi,3
iid∼ Gamma( 10, 10) for i = 1, . . . , n3

Xi,4
iid∼ 0.5N ( 0, 0.5 ) + 0.5N ( 2, 0.5 ) for i = 1, . . . , n4

Under all DGPs the model is misspecified due to lack of symmetry in one or more populations. Under
DGP 3 and DGP 4 the true partition is {1}, {2, 3}, {4}, while under DGP 5 it is {1, 2, 3, 4}. In DGP 3
the second population differs from the others also in distribution (what we called non-location effect),
the same is true for the first and the fourth populations respectively under DGP 4 and DGP 5. Table 8
shows that the model is able to detect the right clustering of the population-specific locations under
all three DGPs. Moreover, Figure 11 shows co-clustering probabilities that differ in correspondence
of the populations affected by non-location effects, more or less evidently based on the DGP used
to generate the data. These results under misspecification are reassuring: the model appears robust
in estimating the partitions of the locations and, moreover, the different within-population patterns
of co-clustering probabilities still highlight heterogeneities different than shifts in population-specific
locations.

Table 8: Posterior probabilities over the space of partitions.

DGP 3 DGP 4 DGP 5

{1,2,3,4} 0 0.001 0.494

{1}{2,3,4} 0 0 0.023

{1,2}{3,4} 0 0 0.014

{1,3,4}{2} 0 0 0

{1}{2}{3,4} 0 0 0.004

{1,2,3}{4} 0.016 0 0.375

{1,4}{2,3} 0 0 0

{1}{2,3}{4} 0.736 0.788 0.047

{1,3}{2,4} 0 0 0

{1,2,4}{3} 0 0 0

{1}{2,4}{3} 0 0 0

{1,2}{3}{4} 0.015 0 0.030

{1,3}{2}{4} 0 0 0

{1,4}{2}{3} 0 0 0

{1}{2}{3}{4} 0.232 0.211 0.012
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(a) Co-clustering DGP 3. (b) Co-clustering DGP 4.

(c) Co-clustering DGP 5.

Figure 11: Posterior similarity matrices under DGP 3-4-5. Patients are ordered based on the
diagnosis and the four black squares highlight the within-sample probabilities.

E Hypertensive dataset

E.1 Additional results

The figures below report the density estimates, the heatmaps of co-clustering probabilities between
pairs of patients and population-specific credible intervals for all ten response variables.

(a) density estimation
(b) co-clustering (c) co-clustering

Supplement – 11



(a) density estimation
(b) co-clustering (c) co-clustering

(a) density estimation
(b) co-clustering (c) co-clustering

(a) density estimation
(b) co-clustering (c) co-clustering

(a) density estimation
(b) co-clustering (c) co-clustering
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(a) density estimation
(b) co-clustering (c) co-clustering

(a) density estimation
(b) co-clustering (c) co-clustering

(a) density estimation
(b) co-clustering (c) co-clustering

(a) density estimation
(b) co-clustering (c) co-clustering
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(a) density estimation
(b) co-clustering (c) co-clustering
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E.2 Prior sensitivity to hyperpriorparameters

Here we verify the robustness of the model w.r.t. different specifications of the hyperparameters. We
consider two alternative specifications for the hyperparameters, which differ from the one employed
in Section 5.2.

Prior specification 1: Gm = N(0, 1); P0,m ≡ NIG(µ = 0, τ = 0.01, α = 3, β = 3); all
concentration parameters have prior equal to Gamma(3, 3)

Prior specification 2: Gm = N(0, 2); P0,m ≡ NIG(µ = 0, τ = 1, α = 2, β = 4); all concentra-
tion parameters have prior equal to Gamma(0.1, 0.1)

The model turns out to be rather robust w.r.t. the choice of the hyperparameters, leading to the
same selected models for all cardiac indexes under all considered specifications. The detailed results
are in the following tables and figures, which report the posterior over partitions of locations, the
density estimates, and the posterior similarity matrices for the last cardiac index.
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Table 9: Posterior probabilities over partitions of means, using prior specification 1. Maximum
a posteriori probabilities are in bold.

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A

{C,G,M,S} 0.018 0.000 0.000 0.000 0.000 0.371 0.276 0.100 0.000 0.000

{C}{G,M,S} 0.002 0.526 0.001 0.086 0.015 0.068 0.207 0.025 0.028 0.000

{C,G}{M,S} 0.002 0.000 0.000 0.000 0.000 0.038 0.035 0.058 0.072 0.045

{C,M,S}{G} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C}{G}{M,S} 0.001 0.139 0.000 0.021 0.023 0.025 0.087 0.034 0.244 0.054

{C,G,M}{S} 0.436 0.000 0.612 0.000 0.000 0.279 0.04 0.499 0.007 0.001

{C,S}{G,M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C}{G,M}{S} 0.157 0.100 0.180 0.542 0.678 0.073 0.172 0.103 0.265 0.026

{C,M}{G,S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C,G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C}{G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C,G}{M}{S} 0.252 0.000 0.092 0.000 0.000 0.081 0.054 0.113 0.087 0.361

{C,M}{G}{S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C,S}{G}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C}{G}{M}{S} 0.131 0.234 0.116 0.351 0.284 0.066 0.130 0.068 0.295 0.513

(a) density estimation
(b) co-clustering (c) co-clustering

Supplement – 16



Table 10: Posterior probabilities over partitions of means, using prior specification 2. Maximum
a posteriori probabilities are in bold.

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A

{C,G,M,S} 0.023 0.000 0.000 0.000 0.000 0.341 0.281 0.109 0.000 0.000

{C}{G,M,S} 0.002 0.484 0.000 0.097 0.055 0.079 0.199 0.028 0.029 0.000

{C,G}{M,S} 0.002 0.000 0.001 0.000 0.000 0.036 0.029 0.042 0.074 0.058

{C,M,S}{G} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C}{G}{M,S} 0.001 0.134 0.001 0.022 0.028 0.033 0.090 0.033 0.238 0.068

{C,G,M}{S} 0.408 0.000 0.585 0.000 0.000 0.254 0.036 0.494 0.014 0.001

{C,S}{G,M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C}{G,M}{S} 0.145 0.111 0.184 0.530 0.643 0.077 0.172 0.105 0.254 0.019

{C,M}{G,S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C,G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C}{G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C,G}{M}{S} 0.247 0.000 0.097 0.000 0.000 0.089 0.050 0.106 0.076 0.346

{C,M}{G}{S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C,S}{G}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C}{G}{M}{S} 0.172 0.270 0.131 0.351 0.274 0.091 0.144 0.084 0.315 0.508

(a) density estimation
(b) co-clustering (c) co-clustering
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E.3 s-HDP with uniform prior estimates on the Hypertensive Dataset

Here we report the results on the real dataset, obtained with the s-HDP with independent uniform
priors on disease-specific locations, described in Section C.1. This prior induces independence between
different cardiac indexes and no borrowing of information (i.e. penalization for multiplicity) is applied.
Moreover, compared to the priors used in Section 5 of the main paper, here the prior associates higher
probability to finer partitions and, thus, does not apply a Ockham’s-razor penalty, resulting in a
different MAP for the EF.

Table 11: Posterior probabilities over partitions obtained through independent uniform priors.
Maximum a posteriori probabilities are in bold.

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A

{C,G,M,S} 0.009 0.000 0.000 0.000 0.000 0.248 0.216 0.047 0.000 0.000

{C}{G,M,S} 0.002 0.568 0.001 0.084 0.014 0.078 0.205 0.027 0.039 0.000

{C,G}{M,S} 0.003 0.000 0.002 0.000 0.000 0.082 0.079 0.160 0.102 0.055

{C,M,S}{G} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C}{G}{M,S} 0.001 0.143 0.001 0.024 0.029 0.027 0.087 0.041 0.262 0.064

{C,G,M}{S} 0.376 0.000 0.555 0.000 0.000 0.324 0.060 0.422 0.005 0.002

{C,S}{G,M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C}{G,M}{S} 0.157 0.115 0.188 0.614 0.730 0.078 0.189 0.096 0.304 0.045

{C,M}{G,S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C,G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C}{G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C,G}{M}{S} 0.353 0.000 0.173 0.000 0.000 0.125 0.088 0.162 0.087 0.378

{C,M}{G}{S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C,S}{G}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

{C}{G}{M}{S} 0.099 0.174 0.079 0.278 0.227 0.039 0.077 0.045 0.201 0.457∑
log15

(
p−pii

)
0.493 0.426 0.432 0.352 0.269 0.664 0.725 0.624 0.603 0.448

(a) density estimation
(b) co-clustering (c) co-clustering
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E.4 NDP estimates on the Hypertensive Dataset

Finally we display the results obtained with ten independent NDPs used on the real dataset. As
expected, the NDP tends to identify coarser partitions. Moreover, the independence between cardiac
indexes of the NDP approach leads to more concentrated posterior probabilities, because no borrowing
of information (i.e. penalization for multiplicity) is applied.

Table 12: Posterior probabilities over partitions obtained through independent NDPs. Maxi-
mum a posteriori probabilities are in bold.

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A

{C,G,M,S} 0.117 0.000 0.000 0.000 0.000 0.613 0.394 0.116 0.000 0.000

{C}{G,M,S} 0.004 0.999 0.001 0.696 0.663 0.047 0.099 0.049 0.313 0.000

{C,G}{M,S} 0.010 0.000 0.014 0.000 0.001 0.027 0.035 0.206 0.043 0.768

{C,M,S}{G} 0.013 0.000 0.000 0.000 0.000 0.040 0.067 0.051 0.000 0.000

{C}{G}{M,S} 0.001 0.000 0.001 0.013 0.163 0.005 0.015 0.088 0.468 0.013

{C,G,M}{S} 0.552 0.000 0.906 0.000 0.000 0.103 0.091 0.154 0.002 0.000

{C,S}{G,M} 0.070 0.000 0.000 0.000 0.000 0.025 0.069 0.029 0.000 0.000

{C}{G,M}{S} 0.077 0.001 0.010 0.207 0.136 0.010 0.032 0.050 0.093 0.006

{C,M}{G,S} 0.009 0.000 0.003 0.023 0.000 0.035 0.045 0.017 0.001 0.000

{C,G,S}{M} 0.047 0.000 0.000 0.000 0.000 0.068 0.081 0.073 0.000 0.000

{C}{G,S}{M} 0.003 0.001 0.000 0.052 0.027 0.007 0.022 0.012 0.030 0.000

{C,G}{M}{S} 0.065 0.000 0.047 0.000 0.000 0.011 0.016 0.071 0.007 0.208

{C,M}{G}{S} 0.025 0.000 0.017 0.004 0.000 0.007 0.017 0.033 0.001 0.000

{C,S}{G}{M} 0.006 0.000 0.000 0.000 0.000 0.006 0.014 0.023 0.000 0.000

{C}{G}{M}{S} 0.007 0.000 0.002 0.007 0.012 0.001 0.007 0.032 0.044 0.006∑
log15

(
p−pii

)
0.603 0.016 0.167 0.349 0.368 0.567 0.785 0.898 0.509 0.239
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