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Abstract

Bayesian nonparametric mixture models are widely used to cluster observations.

However, one major drawback of the approach is that the estimated partition often

presents unbalanced clusters’ frequencies with only a few dominating clusters and a

large number of sparsely-populated ones. This feature translates into results that are

often uninterpretable unless we accept to ignore a relevant number of observations and

clusters. Interpreting the posterior distribution as penalized likelihood, we show how

the unbalance can be explained as a direct consequence of the cost functions involved

in estimating the partition. In light of our findings, we propose a novel Bayesian

estimator of the clustering configuration. The proposed estimator is equivalent to

a post-processing procedure that reduces the number of sparsely-populated clusters

and enhances interpretability. The procedure takes the form of entropy-regularization

of the Bayesian estimate. While being computationally convenient with respect to

alternative strategies, it is also theoretically justified as a correction to the Bayesian

loss function used for point estimation and, as such, can be applied to any posterior

distribution of clusters, regardless of the specific model used.

Keywords— Dirichlet process, Loss functions, Mixture models, Unbalanced clusters, Ran-

dom partition

1 Introduction

Clustering methods are used to detect patterns by partitioning observations into different groups.

What are desirable characteristics of clusters depends on the specific applied problem at hand

(see e.g., Hennig, 2015). Nonetheless, clustering methods are typically motivated by the idea

that observations are more similar within the same cluster than across clusters (accordingly to

a certain definition of similarity). Clustering has been proven useful in a large variety of fields

including but not limited to image processing, bio-medicine, marketing, and natural language
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processing. Clustering methods are used not only to detect sub-groups of subjects, but also for

dimensionality reduction (Blei et al., 2003; Petrone et al., 2009), outlier-detection (Shotwell and

Slate, 2011; Ngan et al., 2015; Franzolini et al., 2023c), testing for distributional homogeneity

(Rodŕıguez et al., 2008; Camerlenghi et al., 2019; Denti et al., 2023; Beraha et al., 2021; Balocchi

et al., 2023; Lijoi et al., 2023), and data pre-processing (Zhang et al., 2006).

Among clustering techniques, we can distinguish two main classes: model-based and non-

model-based. The former methods are built on some assumptions about the sampling mechanism

generating the observations. The latter are algorithmic procedures computing clusters’ alloca-

tions without using distributional assumptions and they typically maximize a certain dissimilarity

between clusters (or a measure of similarity of the points clustered together). Contrary to algo-

rithmic clustering techniques, such as k-means or hierarchical clustering, model-based methods

allow us to perform inference via rigorous probabilistic assessments, providing a natural way of

quantifying uncertainty. Importantly, when the assumption about the data generating mechanism

is coherently extendable to future data (for example, in infinite exchangeable models, such as the

Dirichlet process mixture Ferguson, 1983; Lo, 1984), model-based clustering produces coherent

predictions for any number of future observations, based on the available past observations. More

precisely, by coherently extendable we mean preserving Kolmogorov consistency, sometimes also

called marginal invariance (Dahl et al., 2017) or projectivity (Betancourt et al., 2022; Rebaudo

and Müller, 2023), meaning that the marginal distribution of a sample of size n, obtained by

marginalizing out the clustering configuration, is equal to the restriction of the distribution of

larger samples of size N > n. Thus, their statistical power is not limited to providing a summary

of the observed data, as it happens with algorithmic non-model-based techniques.

Typically, model-based clustering frameworks are equivalent to the assumption that the ob-

servations y1, . . . yn are extracted from an infinite population following a mixture

yi
iid∼

K∑
h=1

wh k(·; θh) for i = 1, . . . , n, n+ 1, . . . , (1)

where the mixture components k(·; θh) are probability kernels to be interpreted as distributions of

distinct clusters in the infinite population, (wh, θh)Kh=1 are unknown parameters that determine

the relative proportion and the shape of such population clusters, and K is the total number of

clusters in the infinite population. K can be either a fixed value or an unknown parameter. In

the following, we focus on those models under which either K is unknown or K = +∞. Assuming

a fixed finite value for K is often restrictive because it limits the flexibility of the assumption in

(1), and should be avoided unless we have strong information/preference about an upper bound

in the number of clusters. Indeed, an important and typically unknown parameter is the number

of clusters Kn in the observed sample, i.e., the number of occupied components in the mixture in

(1). Obviously, Kn ≤ min(K,n). For this reason, in a framework in which n is let to vary, K is

typically either fixed to +∞ (e.g., in Dirichlet process mixtures, Ferguson, 1983; Lo, 1984) or it is

estimated from the data (e.g., mixtures of finite mixtures, see Nobile, 1994; Miller and Harrison,

2018; Argiento and De Iorio, 2022).

One limitation typically encountered in model-based clustering is that the clustering point

estimate presents highly unbalanced cluster frequencies. Especially when the number of mixture
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components is not arbitrarily fixed to a finite small number, the estimated partition tends to

include only a few dominating clusters and a large number of sparsely-populated ones. This

problem is well-known in Bayesian discrete mixtures such as Dirichlet process mixtures, Pitman-

Yor process mixtures, and mixture of finite mixtures. This feature is undesirable and poses

important problems in terms of interpretability. High unbalance in the cluster frequencies typically

forces us to disregard all observations assigned to small clusters and just interpret the more-

populated ones, for which enough observations are available. However, the number of small

clusters is often not negligible, so the total number of ignored observations in the interpretation

of the cluster is not negligible as well. Disregarding observations assigned to small clusters when it

comes to model-based clustering is not justified, especially in light of the fact that the unbalance

in clusters’ frequencies ultimately appears as a feature of the method and not of the specific data

analyzed.

The unbalance of the cluster frequencies can easily be explained as the result of the interaction

of the rich that get richer property and the unbounded number of clusters in Bayesian mixture

models. See Lee and Sang (2022) for a recent detailed discussion on the topic. The Bayesian

learning mechanism of the rich that get richer, as the number of observations increases, increases

the probability of observing members of clusters that have already been observed. At the same

time, both in infinite mixture models and in mixture of finite mixtures with a prior on the number

of components that assigns positive probability on an infinite set, the probability of observing a

new cluster is always positive for any n number of observations already allocated. Thus, when

new observations are collected the induced learning mechanism tends to both repopulate large

existing clusters (due to the rich that get richer property) and to create new small clusters (due

to the fact that the probability of observing new clusters is positive). The interactions between

these two properties naturally reduce into unbalanced clusters. However, correcting unbalance

intervening on one of these two properties is not optimal. It requires either fixing a small upper

bound for the number of clusters (i.e., K) or breaking probabilistic properties of the model as

Kolmogorov consistency of the law of the observable variables (see, for instance, Wallach et al.,

2010; Lee and Sang, 2022).

Here we propose a correction of the clusters’ unbalance that affects neither the Bayesian

learning mechanism nor the attractive probabilistic properties of model-based clustering. Our

proposal is theoretically justified as a correction to the loss function used for the Bayesian estimate

that explicitly reflects the loss in which the analyst incurs when the point estimate of the clustering

configuration is uninterpretable.

The content of the paper is organized as follows. Section 2 presents the study of the cost

functions involved in BNP clustering models and explains the presence of noisy and sparsely

populated clusters typically observed in the posterior estimates of these models. Then, in light

of this study, our computationally convenient and theoretically justified solution to reduce the

number of sparsely populated clusters is presented in Section 3 and showcased on simulated and

real data, respectively in Sections 4 and 5. The code to reproduce all results in the paper is

available at https://github.com/GiovanniRebaudo/ERC.
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2 Implied costs functions in Bayesian nonparametric

clustering

The main goal of clustering techniques is to estimate a partition of the observed sample, more

than the distribution of the whole ideal population in (1). The partition that one wants to

estimate can be encoded using a sequence of subject-specific labels (c1, . . . , cn) taking value in

the set of natural numbers such that ci = cj = c if and only if yi and yj belong to the same

cluster and follow the same mixture component k(·; θc), i.e. yi | ci
ind∼ k(·; θci) for i = 1, . . . , n.

The indicators (c1, . . . , cn), as just defined, are affected by the label switching problem (see, for

instance, Stephens, 2000; McLachlan et al., 2019; Gil-Leyva et al., 2020). In the following, we

assume them to be encoded in order of appearance. This means that c1 = 1, i.e. the first

observation y1 always belongs to the first cluster. Then either c2 = c1 = 1, if the second

observation y2 is clustered together with y1, or c2 = 2, otherwise, and so on and so forth. Note

that, thanks to exchangeability, we can focus on an arbitrary order of the observations without

affecting the joint law of the sample and thus posterior inference of the clustering configuration.

The likelihood for c = (c1, . . . , cn) and θ = (θ1, . . . , θKn) is

L(c,θ;y) =

Kn∏
c=1

∏
i:ci=c

k(yi; θc). (2)

When Kn is unknown, the clustering labels in (2) cannot be estimated with a standard fre-

quentist approach. In fact, when the maximum likelihood estimator (MLE) for (2) exists, it

coincides with the vector of MLEs (θ̂1, . . . , θ̂n), where each θ̂i is obtained considering one obser-

vation at a time and the independent models yi ∼ k(yi | θi), for i = 1, . . . , n. This result is an

immediate consequence of

max
(θ,c)

n∑
i=1

log k(yi; θci) ≤
n∑
i=1

max
θi

log k(yi; θi)

and when there are no joint constraints among the parameters in θ the equality holds.

Moreover, note that under typical mixture model assumptions for clustering, we have that

θ̂1 6= . . . 6= θ̂n. For instance, when k is a multivariate Gaussian density and θ is the pair of

mean vector and variance matrix of the Gaussian component, such the MLE entails a number

of clusters equal to the number of distinct observed values, that by model’s assumptions equals

n with probability 1. Thus, no information on clusters can ever be gained through MLE and

overfitting is unavoidable unless one relies on strong restrictions of the parameter space (cfr. also

with Theorem 1 and 2 in Casella et al., 2014, where the use of a uniform prior over all possible

partitions is considered). In this regard, note that maximizing (2) is not the same as computing

the nonparametric maximum likelihood estimator (Lindsay, 1995; Polyanskiy and Wu, 2020; Saha

and Guntuboyina, 2020) for the mixture model in (1).

Differently, Bayesian models, and in particular Bayesian nonparametric (BNP) models, are

largely used for model-based clustering, since priors act as penalties, shrinking the number of

distinct clusters. The vast majority of Bayesian models for clustering rely on a prior for c and

Kn defined through an exchangeable partition probability function (EPPF) (see, Pitman, 1996)
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and, independently, a prior P is used for the unique values (θ1, . . . , θKn). Recall that an EPPF

characterizes the distribution of an exchangeable partition, with EPPF(n1, . . . , nKn) being the

probability of observing a particular (unordered) partition of n observations into Kn subsets of

cardinalities {n1, . . . , nKn}.
Therefore, the corresponding posterior distribution is

p(Kn, c,θ | y) ∝
Kn∏
c=1

∏
i:ci=c

k(yi; θc)× EPPF(n1, . . . , nKn)× P (dθ), (3)

which can be equivalently represented as the cost function − log(p(Kn, c,θ | y)), i.e.

C(Kn, c,θ;y) = Clik(Kn, c,θ;y) + Cpart(Kn, c;α) + Cbase(Kn,θ),

which is the sum of three terms, that in the following are named respectively likelihood cost,

partition cost, and base cost.

As already mentioned, the minimum likelihood cost

Clik(Kn, c,θ;y) = −
Kn∑
c=1

n∑
i:ci=c

log k(yi; θc)

typically corresponds to Kn equal to the number of distinct observed values. The remaining two

costs are those defined by the prior of the model and their marginal behavior is described here

below. Clearly, any inference result has to be derived based on the whole posterior distribution

in (3), which is the result of the joint, and not marginal, effects of all three costs. Nonetheless

considering one cost at a time allows us to gain insights regarding the estimation procedure and

the frequentist penalties induced by the prior.

2.1 Base cost

A lot of attention in the literature has been devoted to the choice of the EPPF and many alter-

natives are available (see, for example, Antoniak, 1974; Green and Richardson, 2001; Lijoi et al.,

2007; Lijoi and Prünster, 2010; De Blasi et al., 2015; Camerlenghi et al., 2018; Miller and Harrison,

2018; Greve et al., 2022), while, except for few cases, mainly within repulsive mixtures (Petralia

et al., 2012; Xu et al., 2016; Bianchini et al., 2020; Xie and Xu, 2020; Beraha et al., 2022), the

role of the base cost appears partially overlooked within the Bayesian methodology literature.

However, when BNP clustering methods are applied in practice, the choice of an appropriate

base distribution is known to be crucial. The most common choice is to use an independent prior

on the unique values so that θc
iid∼ P0 and

Cbase(Kn,θ) = −
Kn∑
c=1

logP0(dθc),

where the variance of the distribution P0 is known to play an important role in the estimation

process and, typically, the higher the variance of P0 the lower the number of clusters identified

by the posterior (cfr., e.g. Gelman et al., 2013, p. 535). This phenomenon can be explained by

looking at the joint distribution induced by P0 on the unique value. Higher values of the variance
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(a) Base cost for (θ1, θ2) with σ2 = 1
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(b) Base cost for (θ1, θ2) with σ2 = 3
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(c) Base cost by distance between θ1 and θ2

with σ2 = 1. Each point corresponds to a

vector (θ1, θ2).
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(d) Base cost by distance between θ1 and θ2

with σ2 = 3. Each point corresponds to a

vector (θ1, θ2).

Figure 1: Kn = 2, bivariate normals with σ2 = 1 and σ2 = 3

correspond to a joint distribution with a smaller mass around the main diagonal and, therefore,

a higher base cost for those vectors (θ1, . . . , θKn) whose components are similar, thus ultimately

favoring the variability of the unique values and penalizing many overlapping clusters. Consider

for instance the case of P0 set to a univariate normal distribution centered in µ and with variance

σ2, we have

Cbase(Kn,θ) =
Kn

2
log(2π) +

Kn

2
log σ2 +

1

2

Kn∑
c=1

(θc − µ)2

σ2
.

When the variance is increased from σ2 to λ2, the base cost increases closer to the Kn-dimensional
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vector (µ, . . . , µ). More formally, defining the Kn-sphere θ ∈ RKn such that
∑Kn

c=1(θc − µ)2 =

Kn
log(λ2/σ2)σ2λ2

λ2−σ2 , we have that the cost increases for vectors (θ1, . . . , θKn) corresponding to points

inside the sphere and decreases for those vectors corresponding to points outside the sphere. This

causes also a reduction in the relative cost of those vectors located far from the main diagonal

compared to the cost of the vectors closer to the main diagonal. To clarify this point, Figure 1

shows the cost function shift caused by an increase in variance from 1 to 3 in the case of Kn = 2

and P0 univariate normal centered in 0. In Figure 1, the number of cluster is fixed to Kn = 2 and

the cost associated to different clusters’ locations (θ1, θ2) ∈ [−3, 3]2 is considered. Figures 1a and

1b show the base cost in the whole plane [−3, 3]2, while Figures 1c and 1d show how the base cost

changes based on the distance between θ1 and θ2, i.e, |θ1 − θ2|. Figures 1c and 1d are obtained

considering a grid of equally spaced points in the plane [−3, 3]2. Comparing the two scenarios of

variance equal 1 and 3, it is evident as the increase in variance results in a smaller penalization

of the distance between cluster locations. In practice, P0 is usually set to be a continuous scale

mixture, where the mixed density is conjugate to the kernel k for computational convenience,

while the mixing density is used to increase appropriately the marginal scale of the mixture P0.

2.2 Partition cost

Finally, let us comment on the partition cost Cpart. Its behavior is less straightforward and we

consider here only two important and widely used cases: Dirichlet process mixtures (DPM) and

Pitman-Yor process (Pitman and Yor, 1997) mixtures (PYPM). With a DPM model, up to an

additive constant, we have

Cpart(Kn, c;α) = −Kn log α−
Kn∑
c=1

log Γ(nc),

where α is the concentration parameter of the Dirichlet Process. The DPM partition cost tends

to favor parsimonious values of Kn (with respect to the likelihood cost that in general tends to

favor Kn = n). However, contrary to the base cost, it depends also on clusters’ frequencies.

Figure 2 showcases the partition cost of DPM for different values of what we refer henceforth

to as the entropy of the frequencies (n1, . . . , nKn), i.e.

S(n1, . . . , nKn) = −
Kn∑
c=1

nc
n

logKn

nc
n
.

Overall the EPPF acts favoring frequencies (n1, . . . , nKn) with low entropy and thus, roughly

speaking, higher sample variance of the frequencies. However, this feature ultimately results in

two distinct effects: one acting on the total number of occupied clusters Kn and another acting on

the variance of the clusters’ frequencies (n1, . . . , nKn). Even though these two features both favor

a reduced entropy, they entail very different scenarios in terms of estimated clustering structure,

especially from an applied and practical point of view. Penalizing large numbers of clusters

is typically desirable in applications because an elevated number of clusters may be difficult

to interpret. However, a partition with few dominating clusters and many sparsely populated

clusters is often highly undesirable because it is hard to interpret unless one decides to ignore all
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Figure 2: Average partition cost as a function of entropy of the partition in a DPM model

with α = 1 for n = 100 observations clustered into 2 (blue line), 3 (red line), and 4 (green

line) clusters. Plotted values are obtained analytically: for each possible partition, the

value of the entropy and the cost are computed and, then, the cost is averaged across

partitions with the same entropy, keeping the number of clusters fixed.

the information contained in the small clusters and focus only on the dominating ones. See also

Green and Richardson (2001) for a study of the posterior entropy in the Dirichlet process mixture

and Greve et al. (2022) for more details on entropy in mixtures of finite mixture models. In the

case of a PYPM the partition cost, up to an additive constant, equals

Cpart(Kn, c;α, σ) = −
Kn∑
c=1

log(α+ σ(c− 1))−
Kn∑
c=1

log Γ(nc − σ) +Kn log Γ(1− σ).

Despite that the EPPFs are different, Figures 2 and 3 show in both processes a closely similar

behavior in terms of entropy penalization. This tendency is coherent with the fact that the

posterior unbalance of cluster frequencies is typically observed in practice under both models,

although they are built on different EPPFs.

Note that Figures 2 and 3 provide us with insights into the behavior of the EPPFs eval-

uated (analytically from the aforementioned expressions) in correspondence of different vectors

of clusters’ frequencies (n1, . . . , nKn), i.e., the probability of a specific clustering configuration

with unordered frequencies {n1, . . . , nKn}. In particular, they show how the EPPF associates

different levels of penalty with different values of entropy. In this regard is important to stress

that the vectors (n1, . . . , nKn) are not in a one-to-one correspondence with the partitions, and

the number of partitions corresponding to certain frequencies varies across vectors. For instance,

when n = 100, there exist
(

100
50,50

)
≈ 1.01e + 29 distinct partitions corresponding to the vector of

frequencies (50, 50) and
(

100
25,25,25,25

)
≈ 1.61e + 57 distinct partitions corresponding to the vector

of frequencies (25, 25, 25, 25). The number of partitions per different vectors of frequencies, which

is not depicted in Figures 2 and 3, does affect both estimates of marginal quantities, such as the

number of clusters Kn, as well as point estimates of the clustering configuration that are different

from the MAP (maximum a posteriori).
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Figure 3: Average partition cost as a function of entropy of the partition in a PYPM

model with α = 1 and σ = 0.5 for n = 100 observations clustered into 2 (blue line), 3

(red line), and 4 (green line) clusters. Plotted values are obtained analytically: for each

possible partition, the value of the entropy and the cost are computed and, then, the cost

is averaged across partitions with the same entropy, keeping the number of clusters fixed.

If we are interested in estimating the number of clusters Kn, we should note that the number

of possible partitions rapidly changes with Kn accordingly to Stirling numbers of the second kind.

More precisely, the Stirling number of the second kind counts the number of different partitions

of n objects into Kn non-empty unordered subsets and can be computed as

1

Kn!

Kn∑
i=0

(−1)Kn−i
(
Kn

i

)
in.

This information must be combined with the partition cost, as represented in Figures 2 and

3, if we are interested in fully understanding the impact of the EPPF on the marginal prior and

posterior distributions of Kn. Combining the two features (i.e., the partition cost per each vector

of frequencies and the number of partitions per each vector of frequencies) the typical partition

cost strongly penalized too many clusters suggested by the likelihood costs, i.e. Kn = n, but still

favors a small (higher than 1) number of clusters that adaptively increases with the sample size

n (see e.g., De Blasi et al., 2015).

3 Regularized-entropy estimator

Once the posterior distribution P(c | y1:n) over the space of partitions is obtained, typically thanks

to a Markov Chain Monte Carlo algorithm, a point estimate ĉ of the partition can be obtained

accordingly to the decision-theoretic approach of Bayesian analysis. More precisely, ĉ is obtained

by minimizing the Bayesian risk, i.e, the expected value of a loss function L(c, ĉ) with respect to

the posterior

c∗ = argmin
ĉ

E[L(c, ĉ) | y1:n] = argmin
ĉ

∑
c

L(c, ĉ)P(c | y1:n),
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Algorithm 1 Entropy-regularized estimate

Inputs: chain of partitions {cm,m = 1, . . . ,M} sampled from the posterior, λ

Output: point estimate c∗

1: Compute S(cm) for m = 1, . . . ,M

2: Compute wm = exp{λS(cm)} for m = 1, . . . ,M

3: w̄m ← wm/
∑

mwm for m = 1, . . . ,M

4: Generate {c̃m,m = 1, . . . ,M}, sampling with replacement from {c1, . . . , cM} with prob.

{w̄m,m = 1, . . . ,M}

5: c∗ ← argmin
∑M

m=1 L(c̃m, ĉ)

where L(c, ĉ) is the loss in which we incur using ĉ as estimates when the partition takes the value

c. How to interpret and elicit the loss in practice can change according to the philosophical point

of view. See, for instance, Robert (2007). Often in parameter estimation, the loss is interpreted

as the cost of choosing ĉ instead of the ideally optimal parameter value c (sometimes interpreted

as the truth). In a more subjective Bayesian framework, it can be interpreted, together with the

model and prior, in terms of the preferences implied on the possible parameter values c via the

Bayesian risk (Savage, 1972). Finally, also in a more frequentist framework, the loss can be chosen

in terms of the implied properties of the estimator ĉ of the unknown true parameter.

Despite the different philosophical justifications, rarely, in applied Bayesian clustering analysis,

a 0-1 loss function and the resulting MAP estimator are employed due to the large support of

the posterior and the fact that the 0-1 loss function does not reflect different levels of distance

between two non-coinciding partitions. Widely used alternatives in applications are Binder loss

(Binder, 1978) or variation of information (VI) loss (see, Meilă, 2007; Wade and Ghahramani,

2018; Dahl et al., 2022b).

We have already stressed how a large presence of noisy clusters is typically undesirable in

practice and we claim that this aspect should be reflected in the loss function used for point

estimation so that the loss of each partition is proportional to its entropy. To do so, consider any

possible loss function L(c, ĉ) one would like to use to derive the estimate, we can define a new

loss function, that we named entropy-regularized, as

L̄(c, ĉ) = exp{λS(c)}L(c, ĉ),

where, with a little abuse of notation w.r.t. the previous section, S(c) is the entropy of the partition

identified by c and λ ∈ R. Recall that the base of the logarithm involved in the computation

of S(c) changes with the argument c and it is equal to the number of unique values in c so

that S(c) = 1 can be obtained for any number of non-empty clusters Kn ≥ 2 (provided that

n/Kn ∈ N). Clearly, when λ is positive, for any candidate estimate ĉ, the loss function is inflated

in correspondence of partitions c with high entropy, as desired.

Minimizing the expected entropy-regularized loss function L̄(c, ĉ) with respect to the posterior
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is equivalent to minimizing the original loss function L(c, ĉ) with respect to an entropy-regularized

version P̄[c | y1:n] of the posterior distribution, i.e.

P̄[c | y1:n] ∝ exp{λS(c)}P[c | y1:n].

This result, while immediate to prove, is highly desirable, because it allows implementation of the

entropy-correction in a very straightforward and computationally feasible way which is described

in Algorithm 1. Before computing summaries of the posterior, a resampling step is applied.

More precisely, each sample from the posterior is resampled with probability proportional to

exp{λS(c)} so that an entropy-regularized version of the whole posterior distribution is obtained,

thanks to a sampling importance resampling step. Then, in the last step of the algorithm the

original loss function L(c, ĉ) is minimized with respect to the entropy-regularized version of the

posterior. Note that to solve such an optimization step we can rely on any of the effective

algorithms available in the literature for the optimization of non-entropy regularized losses. See

e.g. Rastelli and Friel (2018); Dahl et al. (2022a). In particular, we use the greedy algorithm

described in Dahl et al. (2022b) as implemented in the R library salso (Dahl et al., 2022a) to

perform the analysis presented in this work.

Thanks to the properties of the importance sampling procedure, the point estimate obtained

minimizing
∑M

m=1 L(c̃m, ĉ) is asymptotically equivalent to the solution of the minimization prob-

lem
∑M

m=1 L̄(cm, ĉ). However, there is a potential drawback of Algorithm 1, which stems from

the finite dimension M of the original sample from the posterior, cm,m = 1, . . . ,M . Although

Algorithm 1 is easy to implement, it may significantly reduce the number of MCMC iterations

considered in the minimization problem. To overcome this issue, one possible solution may be to

monitor the effective sample size (ESS) of the importance sampling step of Algorithm 1 (see e.g.,

Liu, 1996) that can be approximated as

ESS =
1∑M

m=1w
2
m

(4)

where wm are defined in Algorithm 1 and M is the number of initial draws for the posterior.

When the ESS is below a certain threshold, it can be increased by increasing the number of

initial draws M from the posterior. It is important to note that this use of the ESS indicator

deviates from the conventional practice. The ESS is typically employed to measure the mixing

performance of sampling algorithms, having as optimal value for the relative effective sample size

ESS/M the value of 1. In this standard use, the ESS can be interpreted as the approximate

number of independent draws obtained from a target distribution. However, this is not the case

in our context. In fact, we should always expect a relative sample size ESS/M lower than 1 to

ensure that the entropy regularization has the desired effect on the estimates, the lower ESS/M

the higher the effect of the regularization. Moreover, here there is no target distribution we are

referring to while computing the ESS. Roughly speaking, the entropy regularization shifts the

importance (i.e., the posterior density) towards specific areas in the support of the posterior and

the ESS in (4) may serve only as a practical indicator of how well those areas have been previously

explored by the original chain.

Finally, note that the choice of λ plays an important role in defining the clustering estimator (as

well as the choice of the not-regularized loss and the probabilistic clustering model assumptions).
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The hyperparameter λ can be elicited jointly with the rest of the prior settings, (e.g., prior,

likelihood, and loss) in a Bayesian decision framework according to the preference on the point

estimate of the clustering. In particular, we recommend choosing λ large if we want a stronger

regularization. How large depends on the specific analysis and the other model and prior choices.

In practice, if the goal is to use clustering just as a data summary can be easy and meaningful

to try different values of λ on a grid and see what produces more interpretable results in a

cross-validation spirit.

4 Simulation studies

4.1 Univariate Gaussian mixtures

We provide here a simulation study, where n = 1000 observations are sampled from 3 distinct

and well-separated univariate Gaussian distributions centered in −4, 0, and 4 and with unitary

variance. Here we refer to “ground true” clustering as the one implied by the membership in-

dicators of the Gaussian kernels under the data-generating truth. We employ a Normal-Normal

DPM, with the base distribution centered at 0 and variance equal to 1. We compare the posterior

estimates obtained by minimizing the Binder loss function and the entropy-regularized Binder

loss function. We set the concentration parameter α = 1, perform 20 000 MCMC simulations,

and use the first 5000 as burn-in. See Section A.1.2 for the results in the exact same setting but

with a Gamma hyperprior for the concentration parameter.

Defining as sparsely populated clusters those clusters containing 10% or less of observations,

we found that in almost a third (4755 out 15 000) of the MCMC iterations, 10% or more of

the observations are allocated into sparsely populated clusters, while in almost two thirds (9306

out of 15 000) of MCMC iterations, 5% or more of the observations are allocated into sparsely

(a) Without entropy regular-

ization.

(b) With entropy regulariza-

tion for λ = 10.

(c) With entropy regulariza-

tion for λ = 20.

Figure 4: Gaussian simulation study. Percentage of observations in sparsely-populated

clusters before and after entropy-regularization. Sparsely populated clusters are here de-

fined as clusters containing 10% or less of observations. The horizontal axis denotes the

percentage of observations (out of 1000) that are assigned to those clusters. The y-axis

represents the number of MCMC samples (out of 15 000).
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(a) True clustering. (b) Binder loss cluster-

ing.

(c) Entropy regularized

Binder loss clustering

λ = 10.

(d) Entropy regularized

Binder loss clustering

λ = 20.

Figure 5: Gaussian simulation study. Estimated clustering for the simulation study darker

squares denote couples of observations clustered together. Panel (a) shows the ground true

clustering. Panel (b) shows the clustering minimizing the Binder loss. Panel (c) shows

the clustering minimizing the entropy-regularized Binder loss for λ = 10 and panel (d) for

λ = 20.

populated clusters, see Figure 4a. The same counts after entropy-regularization of the posterior

(as described in the previous section) are, with λ = 10, 4088 and 7888 out 15 000, see Figure 4b,

and, with λ = 20, 1375 and 3290 out 15 000, see Figure 4c. Notice that coherently with the

interpretation of the regularization in terms of the loss function, the regularized posterior should

be intended only as a computational tool to provide summaries of the posterior distribution (e.g.,

point estimates and credible balls) and not as a posterior distribution itself.

Finally, Figure 5 shows the ground truth and the estimated clusters with and without entropy

regularization. They highlight how the regularization allocates observations from noisy clusters

into dominating ones.

The main purpose of regularization is to provide a more interpretable and possibly more par-

(a) Without entropy regular-

ization.

(b) With entropy regulariza-

tion for λ = 10.

(c) With entropy regularization

for λ = 20.

Figure 6: Gaussian simulation study. Estimated number of clusters and clusters’ frequen-

cies.
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simonious representation of the dataset at hand without disregarding observations. Therefore, in

general, the procedure prioritizes interpretability over the recovery of a frequentist truth. Note

also that even in the ideal frequentist situation of knowing the true data simulation density the

misclassification rate will be typically low, but not zero, if the mixture kernels have overlapping

supports as in the Gaussian scenario. However, monitoring misclassification errors in simulation

studies can still be useful as it provides insights into how entropy regularization redistributes

observations to achieve more balanced cluster frequencies. In this study, the application of regu-

larization results in a reduction in misclassification errors, which is consistent with the fact that

the highly unbalanced clusters are induced by the learning mechanism of BNP mixtures rather

than the data itself. In particular, the number of observations misclassified (with respect to the

simulation truth) with the Binder loss point estimate (λ = 0) is 61, with the regularization with

λ = 10 is 54 and with λ = 20 is 30.

Figure 6 shows the cluster frequencies for the three point-estimates. Note that in this simple

univariate Gaussian kernel simulation scenario we can obtain the correct number of occupied com-

ponents (i.e., clusters) and thus avoid sparsely populated clusters in the point estimate also using

the VI loss (with the default parameter a = 1 as implemented in salso) instead of considering

the Binder loss (with the default parameter a = 1). However, without entropy regularization,

both the VI loss and the Binder loss entail sparsely populated clusters in more complex scenarios,

such as the multivariate simulation study presented in the next Section 4.2 and real-world dataset

considered in the Section 5, respectively.

4.2 Multivariate Bernoulli mixtures and latent class analysis

In this section, we discuss the results of a synthetic numerical experiment involving multivariate

Bernoulli data. Results are obtained employing a DPM with independent Bernoulli kernels, such

(a) Without entropy regular-

ization.

(b) With entropy regulariza-

tion for λ = 10.

(c) With entropy regulariza-

tion for λ = 20.

Figure 7: Multivariate Bernoulli simulation study. Percentage of observations in sparsely-

populated clusters before and after entropy-regularization. Sparsely populated clusters are

here defined as clusters containing 10% or less of observations. The horizontal axis denotes

the percentage of observations (out of 1000) that are assigned to those clusters. The y-axis

represents the number of MCMC samples (out of 15 000).
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that the likelihood is

yi | (wh)h≥1, (p1,h, . . . , pJ,h)h≥1
iid∼
∞∑
h=1

wh

 J∏
j=1

pyij,h(1− pj,h)1−yi


where the hth component has weight wh and it is characterized by the vector of probabilities

(p1,h, . . . , pJ,h). The model allows for the estimation of latent classes, which are commonly used

in latent class analysis (LCA) to analyze multivariate discrete outcomes, often binary in nature.

In LCA, each latent class is represented by a mixture component, and the observations within

each class are assumed to be independent. This assumption holds for LCA even though, typically,

the observed variables are assumed to be statistically dependent. This is a crucial aspect of LCA:

the classes are indeed used to represent the observed dependence (see, for instance, McCutcheon,

1987). The rationale behind the approach is that estimating the dependence across J binary

outcomes is often challenging, particularly when J is large, as a J-variate Bernoulli distribution

requires J2 − 1 parameters to be estimated. The goal of LCA is to explain and approximate

the observed dependence in the data by introducing latent classes. Thus, this model serves the

purpose of approximating complex dependent J-variate binary distributions through the identi-

fication of patterns in the data that can explain the observed dependence in a more concise and

interpretable manner than estimating the entire set of J2 − 1 parameters. This method is also

referred to as “the categorical data analog of factor analysis” (McCutcheon, 1987). For more

(a) Without entropy regular-

ization (Binder).

(b) With entropy regulariza-

tion for λ = 10 (Binder).

(c) With entropy regularization

for λ = 20 (Binder).

(d) Without entropy regular-

ization (VI).

(e) With entropy regularization

for λ = 10 (VI).

(f) With entropy regularization

for λ = 20 (VI).

Figure 8: Multivariate Bernoulli simulation study. Estimated number of clusters and

clusters’ frequencies.
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details on classical LCA we refer to Lazarsfeld (1955), McCutcheon (1987), and Andersen (1982),

for Bayesian LDA to White and Murphy (2014) and Li et al. (2018), and for recent Bayesian

nonparametric generalizations to Bartolucci et al. (2017), Koo and Kim (2020), Franzolini et al.

(2023a), and Qiu et al. (2023).

In this simulation, we generate data for n = 250 subjects and p = 50 positively correlated

binary outcomes, with pairwise correlations ranging from 0.0871 to 0.5014. We fit a multivariate

Bernoulli DPM, with a J-variate product of Beta (0.2, 0.2) as base distribution and a Gamma (1, 1)

prior on the concentration parameter α, perform 20 000 MCMC simulations, and use the first 5 000

as burn-in.

Defining, as in the previous section, as sparsely populated clusters those clusters containing

10% or less of observations, we have that in 11 788 out 15 000 of the MCMC iterations, 10% or

more of the observations are allocated into sparsely populated clusters, while in 13 815 out of

15 000 of MCMC iterations, 5% or more of the observations are allocated into sparsely populated

clusters, see Figure 7a. The same counts after entropy-regularization of the posterior are, with

λ = 10, 8 203 and 10 373 out 15 000, see Figure 7b, and, with λ = 20, 1 660 and 2 342 out 15 000,

see Figure 7c. Figure 8 shows the cluster frequencies for the three point-estimates obtained with

both Binder and VI losses, without and with regularization.

5 Results for the wine dataset

(a) Estimated partition

(Binder) without entropy

regularization.

(b) Estimated partition (VI)

without entropy regulariza-

tion.

(c) Estimated partition

(same with Binder or VI)

after entropy regularization.

Figure 9: Estimated partitions for the wine dataset. Darker squares denote couples of

observations clustered together, observations are ordered based on co-clustering.

We test the performance of our method also on the wine dataset available on R, where data

are the results of a chemical analysis of wines grown in the same region in Italy but derived from

three different cultivars. The analysis determined the quantities of 13 constituents found in each

of the three types of wines. Here we refer to the clustering identified by the three types of wines

as “ground truth”.
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(a) Without entropy regular-

ization (Binder).

(b) Without entropy regular-

ization (VI).

(c) With entropy regulariza-

tion (Binder or VI).

Figure 10: Estimated number of clusters and clusters’ frequencies for the wine dataset.

(a) Types of wines. (b) Binder loss. (c) VI loss. (d) Entropy regularized

(Binder or VI).

Figure 11: Estimated clustering for the wine dataset. Darker squares denote couples of

observations clustered together, observations are ordered based on three groups of types of

wine.

We use the 13 constituents to estimate a Dirichlet process mixture model with a multivariate

Gaussian kernel, and we try to recover the three groups of types of wine through the estimated

clustering. The concentration parameter is set to 0.1 to further favor a small number of clusters

(see Section A.1.1 for the results in the exact same setting but with a Gamma hyperprior for the

concentration parameter). Data have been scaled before estimating the clustering configuration.

After running the MCMC for 20 000 iterations and using the first 5000 as burnin, both the

Binder loss and the VI functions identify a partition of five clusters, while our estimator for

λ = 50 correctly identifies three clusters. Note that both the point estimates obtained with

regularizing (with λ = 50) the Binder loss and the VI loss are identical in this analysis (contrary

to their not regularized estimates). See Figure 9 and Figure 10.

Lastly, Figure 11 compares the clustering based on three groups of types of wine with the

three estimates. The number of wrongly allocated wines, which equals 9 in the Binder loss point

estimate and 8 in the VI point estimates, is reduced to 6 in the entropy regularized point estimate.
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6 Conclusions

As highlighted in the recent literature, common posterior point estimates of the clustering ob-

tained from Bayesian discrete mixture models suffer from unbalanced clusters’ frequencies with

only a few dominating clusters and a large number of sparsely-populated ones. In contrast,

we introduced a general entropy-regularization of the existing losses that reduces the number

of sparsely-populated clusters and enhances the interpretability of the Bayesian point estimate.

Importantly, our proposal is theoretically justified and does not break the projectivity of the

Bayesian model. We have further devised a simple and general computational scheme allowing

for efficient computation of such entropy-regularized clustering estimate. This work paves the

way for future intriguing research directions that we plan to address in forthcoming works.

From a theoretical perspective, it is interesting to study the connection with a wise recent

probabilistic clustering model that induces less unbalanced clusters via breaking Kolmogorov

consistency (Lee and Sang, 2022). Indeed we note that the entropy penalization introduced in

this work can be incorporated in the prior instead of being applied to the loss function, ultimately

constituting a sparsity penalized random partition model. However, such a random partition

model breaks Kolmogorov consistency, contrary to our coherent loss-based approach discussed in

Section 3. The decision to use a Kolmogorov consistent or inconsistent model ultimately depends

on the specific applied problem. One of the strengths of our loss-based approach lies in the fact

that, regardless of the choice made in this regard by the analyst, the Kolmogorov consistency

of the model would not be affected by adopting our technique. Nonetheless, this duality of

our proposal allows bridging connection with other recent interesting non-Kolmogorov consistent

random partition models that are built by modifying existing EPPFs. See, e.g., Dahl et al. (2017);

Paganin et al. (2021); Zanella et al. (2016).

From modeling and applied perspectives, it is natural to move beyond the exchangeable case

and extend our regularized loss-based estimator to perform probabilistic clustering for dependent

random partition models that allow considering covariates (see e.g., Teh et al., 2006; Müller et al.,

2011; Page et al., 2022a) or time-dependent random partition models such as those proposed, for

example, in Page et al. (2022b); Franzolini et al. (2023b). Finally, the general loss-penalization

that we have introduced and Algorithm 1 seem an appropriate tool for performing joint proba-

bilistic clustering of different entities like in separate exchangeable partition models that allow

performing bi-clustering in matrix data (Lee et al., 2013; Lin et al., 2021) and nested random

partition model that allows us to jointly cluster populations and observations such as in nested

partial exchangeable partition models (Rodŕıguez et al., 2008; Zuanetti et al., 2018) and recent

extensions.
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A.1 Appendix: Prior on the concentration parameter

In Section 2 we report the partition cost associated with a DPM. It is clear that the choice of

the concentration parameter α is relevant in controlling the number of clusters. Thus, in order to

have a more flexible distribution on the clustering of the data, in many implementations of the

Dirichlet process mixture a prior for α is specified, leading to a mixing measure that is itself a

mixture in the sense of Antoniak (1974). Ascolani et al. (2023) also show that introducing such a

prior can have a major impact on the asymptotic behavior of the number of clusters, as Dirichlet

process mixtures can be consistent for the number of clusters. In these sections, we show the

results obtained by repeating the analyses performed in the main paper where we use a Gamma

prior (Escobar and West, 1995) on the concentration parameter of the Dirichlet process. More

precisely, we change the prior such that

α ∼ Gamma(1, 1)

and all the remaining prior specifications and MCMC settings (e.g., also the number of iterations)

are set equal to the previous one. We show that also in such a case the proposed entropy-

regularization is still crucial to enhance the interpretability of the clustering point estimate.

A.1.1 Wine dataset

We note that the point estimates obtained with regularizing (with λ = 50) the Binder loss and

the VI loss are different in this analysis (contrary to the not regularized estimates with fixed

concentration parameter). See Figure A.1 and Figure A.2 for the estimated partitions and related

frequencies, respectively. Figure A.3 compares the clustering based on three groups of types of

wine with the four estimates. The number of wrongly allocated wines is equal to 10 in the Binder

loss point estimate and 8 in the VI point estimates, while 8 and 10 with their regularized versions.

Moreover, the number of clusters in the point estimate of the partition is 7 with the Binder loss

and 5 with the VI loss, while 4 and 3 with their regularized versions (where the ground-truth is

3).

(a) Estimated partition

(Binder) without en-

tropy regularization.

(b) Estimated partition

(VI) without entropy

regularization.

(c) Estimated partition

(Binder) after entropy

regularization.

(d) Estimated partition

(VI) after entropy reg-

ularization.

Figure A.1: Estimated (α random) partitions for the wine dataset. Darker squares denote

couples of observations clustered together, observations are ordered based on co-clustering.
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(a) Without entropy

regularization (Binder).

(b) Without entropy

regularization (VI).

(c) With entropy regu-

larization (Binder).

(d) With entropy regu-

larization (VI).

Figure A.2: Estimated (α random) number of clusters and clusters’ frequencies for the

wine dataset.

(a) Types of

wines.

(b) Binder loss

clustering.

(c) VI loss cluster-

ing.

(d) Entropy reg-

ularized clustering

(Binder).

(e) Entropy reg-

ularized clustering

(VI).

Figure A.3: Estimated clustering for the wine dataset (α random). Darker squares denote

couples of observations clustered together, observations are ordered based on three groups

of types of wine.

A.1.2 Gaussian simulation scenario

Recalling that we defined as sparsely populated clusters those clusters containing 10% or less

of observations, we found that 6 040 out 15 000) of the MCMC iterations, 10% or more of the

observations are allocated into sparsely populated clusters, while in 9 908 out of 15 000 of MCMC

iterations, 5% or more of the observations are allocated into sparsely populated clusters, see

Figure A.4a. The same counts after entropy-regularization of the posterior are, with λ = 10,

2772 and 5269 out 15 000, see Figure A.4b, and, with λ = 20, 417 and 1302 out 15 000, see

Figure A.4c. Figure A.5 shows the ground truth and the estimated clusters with and without

entropy regularization. The number of observations misclassified (with respect to the simulation

truth) with the Binder loss point estimate (λ = 0) is 80, with the regularization with λ = 10 is 37

and with λ = 20 is 25, showing an improvement also due to regularization also with this model.

Figure A.6 shows the cluster frequencies for the three point-estimates. Finally, we note that also

with α random in this simple univariate Gaussian kernel simulation scenario we can obtain the

correct number of occupied components (i.e., clusters) and thus avoid sparsely populated clusters

in the point estimate using the more parsimonious VI loss (with the default parameter a = 1 as

implemented in salso) instead of considering the Binder loss (with the default parameter a = 1).
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(a) Without entropy regular-

ization.

(b) With entropy regulariza-

tion for λ = 10.

(c) With entropy regulariza-

tion for λ = 20.

Figure A.4: Gaussian simulation study (α random). Percentage of observations in sparsely-

populated clusters before and after entropy-regularization. Sparsely populated clusters are

here defined as clusters containing 10% or less of observations.

(a) True clustering. (b) Binder loss

clustering.

(c) Entropy regu-

larized Binder loss

clustering λ = 10.

(d) Entropy regu-

larized Binder loss

clustering λ = 20.

Figure A.5: Gaussian simulation study (α random). Estimated clustering for the simula-

tion study darker squares denote couples of observations clustered together.

(a) Without entropy regular-

ization.

(b) With entropy regulariza-

tion for λ = 10.

(c) With entropy regulariza-

tion for λ = 20.

Figure A.6: Gaussian simulation study (α random). Estimated number of clusters and

clusters’ frequencies.
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