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Abstract

Species sampling processes have long served as the fundamental framework for modeling

random discrete distributions and exchangeable sequences. However, data arising from dis-

tinct but related sources require a broader notion of probabilistic invariance, making partial

exchangeability a natural choice. Countless models for partially exchangeable data, collectively

known as dependent nonparametric priors, have been proposed. These include hierarchical,

nested and additive processes, widely used in statistics and machine Learning. Still, a unifying

framework is lacking and key questions about their underlying learning mechanisms remain

unanswered.

We fill this gap by introducing multivariate species sampling models, a new general class of non-

parametric priors that encompasses most existing finite- and infinite-dimensional dependent

processes. They are characterized by the induced partially exchangeable partition probability

function encoding their multivariate clustering structure. We establish their core distribu-

tional properties and analyze their dependence structure, demonstrating that borrowing of

information across groups is entirely determined by shared ties. This provides new insights

into the underlying learning mechanisms, offering, for instance, a principled rationale for the

previously unexplained correlation structure observed in existing models. Beyond providing a

cohesive theoretical foundation, our approach serves as a constructive tool for developing new

models and opens novel research directions to capture richer dependence structures beyond

the framework of multivariate species sampling processes.

Keywords: Bayesian nonparametrics, Dependent nonparametric prior, Hierarchical process,

Multi-armed bandit, Partial exchangeability, Random partition.
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1 Introduction

A fundamental homogeneity assumption in Bayesian inference is the (infinite) exchangeability

of observables, which corresponds to distributional invariance with respect to permutations

of the data. According to de Finetti’s representation Theorem, there is a one-to-one cor-

respondence between an exchangeable sequence (Xi)i≥1 and a random probability measure,

conditionally on which the Xi’s are independent and identically distributed (i.i.d.). This

foundational result supports the Bayesian framework, based on likelihood and prior, via a

probabilistic symmetry assumption on the data. At the same time, it establishes a conceptual

bridge to the classical i.i.d. assumption in frequentist inference. In a parametric setup, the

random probability measure associated with (Xi)i≥1 is indexed by a finite-dimensional param-

eter, whereas in a nonparametric setting, no such restriction is imposed. A cornerstone of

the latter is represented by the Dirichlet process (DP) introduced in Ferguson (1973). Its full

weak support property implies remarkable flexibility compared to parametric counterparts,

and several popular Bayesian nonparametric (BNP) models can be seen as extensions of the

DP itself.

In a seminal work, Pitman (1996) introduced a unifying framework for studying almost

surely discrete random probability measures under the assumption that weights and locations

are independent. The resulting class, known as species sampling processes (SSPs) (Ghosal

et al., 2017), includes the DP as a special case and satisfies several structural properties that

have been pivotal to understanding and constructing discrete priors for modeling exchangeable

data. Entire classes of popular nonparametric and parametric priors, such as homogeneous

normalized randommeasures with independent increments (Regazzini et al., 2003; James, Lijoi,

et al., 2009), Gibbs-type priors (Gnedin and Pitman, 2006; De Blasi et al., 2015), and stick-

breaking processes (Ishwaran et al., 2001; Gil–Leyva et al., 2023) fall within the framework of

SSPs, and henceforth also their notable special cases, which include Pitman-Yor (Pitman and

Yor, 1997), normalized inverse Gaussian (Lijoi, Mena, et al., 2005) and normalized generalized

gamma (Lijoi, Mena, et al., 2007b) processes. Moreover, relevant special cases also include

finite-dimensional processes such as the finite Dirichlet Multinomial (Green et al., 2001) and

mixture of finite-dimensional processes with a prior on the number of locations (Nobile, 1994;

Richardson et al., 1997; Nobile and Fearnside, 2007; Gnedin, 2010; De Blasi et al., 2013; Miller

et al., 2018). A summary of J. Pitman’s theory on univariate SSP (Pitman, 1996) can be found

in Section S1 of the Supplementary Material.

However, exchangeability is often too restrictive an assumption in applied settings. The

pioneering contributions of MacEachern (1999) and MacEachern (2000) opened a new research

line in both the statistics and machine learning literature, whose goal is to develop models that

accommodate heterogeneity across data sources or experimental conditions. More specifically,

when data originate from J distinct populations, such as in meta-analysis, topic modeling or

multi-center studies, the exchangeability assumption becomes overly restrictive, since it fails to

account for heterogeneity across distinct groups. Conversely, assuming independence between
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populations precludes information sharing across experiments, which is often a key goal in

multi-sample studies (see, for instance, Woodcock et al., 2017; Chen et al., 2019; Ouma et al.,

2022; Su et al., 2022). A natural compromise between these extremes is the probabilistic

framework of partial exchangeability (de Finetti, 1938), which entails exchangeability within

but not across different populations, while still allowing for dependence among them. Consider

a random array X with J rows and infinite columns. Then X is partially exchangeable if and

only if its distribution is invariant with respect to finite permutations within each row but

not across columns. This means that elements within each population, i.e., belonging to the

same row, are exchangeable, but permuting elements across populations, i.e., belonging to

different rows, would alter the distribution of X. For instance, suppose to have partially

exchangeable binary data from J = 2 groups and that we observe X1,1 and X1,2 from the

first group, and X2,1 from the second. Then, P[X1,1 = 1, X1,2 = 0, X2,1 = 1] = P[X1,2 =

1, X1,1 = 0, X2,1 = 1] as this is a permutation within group 1. However, it is possible that

P[X1,1 = 1, X1,2 = 0, X2,1 = 1] ̸= P[X1,1 = 1, X2,1 = 0, X1,2 = 1], since invariance with

respect to permutations across groups is not preserved. Similarly to the exchangeable case,

partial exchangeability implies the existence of a vector of (dependent) random probability

measures (P1, . . . , PJ), such that Xj,i | P1, . . . , PJ
ind∼ Pj , for i ≥ 1 and j = 1, . . . , J . From a

Bayesian perspective, modeling a partially exchangeable array is equivalent to defining a prior

distribution for a vector of dependent probability measures. Countless approaches have been

proposed in the literature and several success stories have been recorded. Notable instances

are hierarchical DPs (Teh et al., 2006), hierarchical normalized completely random measures

(Camerlenghi, Lijoi, Orbanz, et al., 2019), hierarchical species sampling models (Bassetti et

al., 2020), nested constructions (Rodŕıguez et al., 2008; Camerlenghi, Dunson, et al., 2019),

additive constructions (Müller et al., 2004; Lijoi, Nipoti, et al., 2014), copula constructions

(Leisen et al., 2011), normalized compound random measures (Griffin et al., 2017), normalized

completely random vectors (Lijoi, Nipoti, et al., 2014; Catalano, Lijoi, et al., 2021), single-

atoms dependent processes (MacEachern, 1999; MacEachern, 2000; Quintana et al., 2022),

compositions of the some of the previous (Camerlenghi, Dunson, et al., 2019; Beraha et al.,

2021; Lijoi, Prünster, et al., 2023; Balocchi, George, et al., 2023; Denti et al., 2023), and many

others (e.g. Horiguchi et al., 2024; Yan et al., 2023; Bi et al., 2023; Lee et al., 2025).

The main goal of these approaches is to flexibly model dependence across populations to

facilitate the sharing of information. This is achieved by defining a collection of dependent

latent random probabilities (P1, . . . , PJ), which in turn induce dependence among the observ-

ables X. Clearly, having a way to quantify the dependence between these random probability

measures is crucial to understanding and guiding such modeling strategies. The most widely

adopted measure of inter-population dependence is the pairwise correlation between Pj and

Pk, for j ̸= k, evaluated on the same set A, namely

Cor[Pj(A), Pk(A)]. (1)

The main reasons this measure has become the benchmark for quantifying dependence are
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Figure 1: Probability of observing a new species at the first draw from population j, after n

observations from population k, i.e., P[Xj,1 /∈ {Xk,1, . . . , Xk,n}], plotted as a function of n. Results

are shown (left to right) for hierarchical Dirichlet processes (HDP, Teh et al., 2006), nested Dirichlet

processes (NDP, Rodŕıguez et al., 2008), and additive Dirichlet processes (+DP, Müller et al., 2004)

for varying values of the correlation measure Cor[Pj(A), Pk(A)].

threefold. First, for most models, it does not depend on the choice of the set A, allowing it

to be interpreted as a global measure of dependence. Second, it is often computable either

analytically or numerically, which greatly enhances its practical appeal. Third, although the

correlation in (1) relies only on the first two moments, it effectively summarizes the depen-

dence structure. On the one hand, it tends to agree with alternative, more complex measures

of dependence that account for the infinite-dimensional nature of the Pi’s whenever these al-

ternatives can be computed (see Catalano, Lijoi, et al., 2021; Catalano, Lavenant, et al., 2024).

On the other hand, different correlation values correspond to markedly different behaviours

of the distribution of observable quantities; this is illustrated in Figure 1, which displays the

probability of observing a new species for three popular dependent processes as the correlation

varies. However, several fundamental questions remain open, and their resolution is crucial for

establishing a rigorous foundation for correlation as a measure of dependence in this context.

First, it is still obscure why (1) typically does not depend on the choice of the set A; related

to this, one would like to understand what conditions on the prior ensure that (1) does not to

depend on the set A. Second, the broader issue of how the properties of the latent random

probability measures Pi’s translate to the observable quantities is still unexplored. This can be

decomposed into two key open questions in terms of correlation: (a) How does the correlation

among the latent Pi’s translate into dependence among observations? (b) Are correlations

among the Pi’s or observable quantities X reliable indicators of dependence? Specifically, are

there models for which Cor[Pj(A), Pk(A)] = 1 if and only if Pj = Pk almost surely (i.e., obser-

vations are exchangeable), and Cor[Pj(A), Pk(A)] = 0 if and only if Pj ⊥ Pk?

These questions point to an even more general theme: many structural properties appear to
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be shared across several classes of dependent processes (e.g., additive, hierarchical, nested,

or combinations thereof), and this naturally raises the question of whether it is possible to

identify a unifying framework, one that would: (i) encompass most existing models; (ii) allow

their structural properties to be studied in a unified way; (iii) provide a foundation for the

principled development of new models.

In this work, we provide comprehensive answers to the open problems outlined above.

Specifically, we introduce a new unifying framework for partially exchangeable data that en-

compasses most existing dependent nonparametric processes. The resulting class of nonpara-

metric prior processes is termed multivariate species sampling processes (mSSPs), as they play

the same foundational role for vectors (P1, . . . , PJ) as species sampling processes (SSPs) do

in the univariate case. We characterize mSSPs through their partially exchangeable partition

probability function, which encodes the induced multivariate clustering structure. We show

that BNP models currently used for partially exchangeable data belong to a notable subclass

of mSSPs, which we refer to as regular, which enjoys additional appealing properties. We also

analyze the dependence structure of these processes and prove that borrowing of information

across groups is entirely determined by shared ties. This leads to new insights into the learning

mechanisms, offering a principled explanation for the correlation structure discussed above.

Beyond providing a cohesive theoretical foundation, our approach serves as a constructive tool

for developing new models and opens new research directions aimed at capturing even richer

dependence structures beyond the mSSP framework.

Finally, while mSSPs generalize SSPs, their essence lies in their multivariate nature: in par-

ticular, in the dependence induced across populations and, consequently, across elements of

the vector (P1, . . . , PJ). This feature is obviously absent in classical SSPs, and the struc-

tural unification of multivariate, infinite-dimensional objects represents a key innovation of

this work.

The paper is structured as follows. mSSP and the notable subclass of regular mSSP are

defined in Section 2. In Section 3, we derive expressions for marginal and mixed moments

of these latent processes in terms of observable quantities. A substantial part of this section

is devoted to analyzing the correlation between the random measures, and we provide the

theoretical foundations for it to be regarded as the benchmark measure of dependence within

the class of regular mSSPs, where uncorrelation implies independence. Sections 4 and 5 are

devoted to the study of the random partitions induced by mSSPs and their corresponding

predictive distributions, respectively. In Section 6, we compare the performance of different

regular mSSPs in the context of a multi-armed bandit problem aimed at maximizing species

discoveries, when sampling sequentially across multiple sites. Finally, Section 7 outlines fu-

ture research directions. The Supplementary Material contains a review of univariate species

sampling processes, all proofs, and further details on the application. Code to reproduce the

experiments is available at https://github.com/GiovanniRebaudo/MSSP.
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2 Multivariate species sampling processes

2.1 General multivariate species sampling processes

When extending a univariate random probability P to the multivariate setting involving a

vector (P1, . . . , PJ) of random probabilities, the species sampling framework of Pitman (1996)

can be naturally generalized to multiple populations according to the following definition.

Recall that π = (πh)h≥1 is a sub-probability sequence if πh ∈ [0, 1], for any h, and
∑

h≥1 πh ≤ 1.

Definition 1. A vector of random probability measures (P1, . . . , PJ) is a multivariate species

sampling process (mSSP) if

Pj
a.s.
=
∑
h≥1

πj,hδθh +

1−
∑
h≥1

πj,h

P0, for j = 1, . . . , J,

where P0 is a non-atomic (deterministic) distribution on a space X, πj = (πj,h)h≥1 is a random

sub-probability sequence, for any j, and θ = (θh)h≥1 are i.i.d from P0 and independent of

π = (π1, . . . ,πJ) ∼ Lπ. We write (P1, . . . , PJ) ∼ mSSP(Lπ, P0). Moreover, if
∑

h≥1 πj,h
a.s.
= 1,

for any j, (P1, . . . , PJ) is said proper.

According to the standard terminology (see, for instance Ghosal et al., 2017), we refer to the

elements in θ as atoms, labels, locations, or species, interchangeably, and to the elements in

π as the weights of the mSSP. The structural independence assumption underlying SSPs of

independence between the locations and a single sequence of weights, is replaced by indepen-

dence between the locations (θh)h≥1 and an array of weights (π1, . . . ,πJ); the dependence

among the πj ’s then induces a multivariate structure across populations. From Definition 1,

the link between mSSPs and SSPs is apparent: it is indeed straightforward to prove that each

coordinate of an mSSP is marginally an SSP. More generally, the class of mSSPs is closed

under marginalization.

Proposition 1. If (P1, . . . , PJ) ∼ mSSP and {j1, . . . , jk} ⊆ {1, . . . , J} then (Pj1 , . . . , Pjk) ∼
mSSP.

At first glance, Definition 1 might lead one to think of an mSSP as arising from several uni-

variate SSPs sharing the same atoms, i.e., the atoms are given by the same sequence, (θh)h≥1

for each group. While this is certainly a possibility, the class of mSSPs is much more general.

In fact, each of the πj,h’s might be zero almost surely, resulting in mSSPs where the random

probabilities P1, . . . , PJ share only a handful or even none of the atoms with positive probabil-

ity. Hence, from an intuitive point of view, one should think of an mSSP as arising from several

SSPs, which potentially share atoms. Moreover, when investigating the pairwise dependence

and quantifying the extent to which species are shared between two random probabilities,

being able to distinguish between shared atoms (with positive probability) and idiosyncratic

ones is often helpful. Definition 1 does not convey this information explicitly, which motivates

6



the need for an alternative representation. Consider the bivariate mSSP (P1, P2), which is ob-

tained marginalizing a J-variate mSSP from Definition 1. Then, the following representation

is equivalent (almost surely).

Proposition 2. (P1, P2) ∼ mSSP iff (P1, P2) admits the following almost sure equivalent

representation

Pj
a.s.
=
∑
h≥1

π
(1,2)
j,h δθ0,h +

∑
h′≥1

π
(j)
j,h′δθj,h′ + π

(j)
j,0P0, for j = 1, 2. (2)

with P[π(1,2)
1,h π

(1,2)
2,h > 0] > 0, for h = 1, 2, . . . and

∑
h≥1 π

(1,2)
j,h +

∑
h′≥0 π

(j)
j,h′ = 1, for j = 1, 2,

and where all the weights are independent of the atoms, which are distributed as θj,h
iid∼ P0, for

j = 0, 1, 2, h = 1, 2, . . .. By convention
∑0

h=1 xh = 0, for any (xh).

Importantly, and in contrast to Definition 1, we now require P[π(1,2)
1,h π

(1,2)
2,h > 0] > 0, which is

clearly equivalent to P[π(1,2)
1,h > 0, π

(1,2)
2,h > 0] > 0, for any h in the first sum. This condition

implies that the atoms in the first sum in (2) are common to both random elements with

positive probability, thus singling out atoms shared with positive probability. Conversely, the

terms in the second summation are almost surely specific to each Pj , meaning that the corre-

sponding atoms cannot be shared across the two populations. Note that the non-atomicity of

P0 implies P(θj,h′ = θj′,ℓ′) = 0 for all (j, h′) ̸= (j′, ℓ′). Finally, π
(j)
j,0 is the cumulative frequency

of almost surely non-shared species that are observed just one time in the infinite popula-

tion sampled from Pj . The advantage of the representation in (2), compared to Definition 1,

lies in the ability to immediately distinguish between shared and non-shared species. This

representation naturally extends to general J-variate processes with J ≥ 2, enabling us to

distinguish between species shared across any subset of the Pj ’s. However, as J grows, the

notation becomes increasingly cumbersome, so we omit the explicit formulation here. More

importantly, representation (2) enables us to identify a notable subclass of mSSPs, which we

term regular and examine in the next Section. Although this subclass encompasses J-variate

processes (P1, . . . , PJ), with J ≥ 2, it suffices to adopt the representation in (2) for any pair

(Pj , Pk) to fully characterize it. Finally, we define the pair consisting of a collection of random

variables X and the mSSP from which these observations are drawn as follows.

Definition 2. A partially exchangeable array X = (Xj,i : i ∈ N, j ∈ [J ]), for some J ∈ N,
follows a multivariate species sampling model (mSSM) if its de Finetti measure is an mSSP.

That is, for every j ∈ [J ] and for every i = 1, 2, . . .

Xj,i | (P1, . . . , PJ)
ind∼ Pj , (P1, . . . , PJ) ∼ mSSP(Lπ, P0) (3)

2.2 Regular multivariate species sampling processes

A notable subclass of mSSPs, which we term regular, arises by imposing a simple independence

condition on the weights associated with the non-shared atoms. First, consider a bivariate
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mSSP (P1, P2) and define

π(j) =

 π
(j)
j,h′∑

ℓ≥0 π
(j)
j,ℓ


h′≥0

for j = 1, 2

where the weights π
(j)
j,h′ are as defined in (2) and by convention 0/0 = 0.

Definition 3. A bivariate mSSP (P1, P2) is regular (rmSSP) if π(1) ⊥ π(2). A J-variate

mSSP (P1, . . . , PJ), with J > 2, is regular if (Pj , Pk) is a rmSSP for any j, k ∈ [J ], with j ̸= k.

Intuitively, regularity requires that the relative frequencies of non-shared species are inde-

pendent for each pair (Pj , Pk) of populations. Note that if either Pj , Pk, or both have no

non-shared species in the representation (2), that is, if
∑

h′≥0 π
(ℓ)
ℓ,h′

a.s.
= 0, then regularity is

trivially satisfied. From a statistical modeling standpoint, it is important to note that the in-

dependence condition required by Definition 3 is relatively mild and, in most applied contexts,

reasonable. This condition implies that the relative frequencies of non-shared species, i.e.,

π(j), should not influence the sharing of information across groups, once the total frequency∑
k≥0 π

(j)
j,k of these idiosyncratic species has been accounted for. Given that these species are

(almost surely) not shared among groups, this assumption seems very reasonable.

In the following, we focus specifically on rmSSPs and their use within BNP models, while

leaving a broader probabilistic study of general mSSPs for future work. Special emphasis on

the regular subclass is warranted for two main reasons. First, rmSSPs differ from non-regular

mSSPs due to the distinctive dependence structure that enables a remarkable characterization

in terms of correlation between the Pj ’s. This result does not extend to general mSSPs,

highlighting a fundamental difference between regular and non-regular mSSPs. Second, the

regular subclass is particularly relevant in statistics, as it encompasses all mSSPs currently

employed in BNP. Some of these will be illustrated in the examples below.

Henceforth, DP(α, P0) denotes the law of a Dirichlet process with concentration parameter

α and base measure P0 (Ferguson, 1973), and GEM(α) denotes a Griffiths-Engen-McCloskey

distribution (Sethuraman, 1994). PYP(σ, α, P0) stands for the law of a Pitman-Yor process

with discount parameter σ, concentration parameter α and base measure P0 (Pitman and

Yor, 1997). CRM(ρ, c, P0) and NRMI(ρ, c, P0) indicate, respectively, the laws of a completely

random measure and a normalized completely random measure with intensity ρ, total mass

parameter c, and base measure P0 (Regazzini et al., 2003; James, Lijoi, et al., 2009). GN(γ, P0)

denotes the law of a Gnedin process with parameter γ, and base measure P0 (Gnedin, 2010),

DMM (τ, P0) is the law of a symmetric Dirichlet-Multinomial process with M number of cat-

egories, concentration parameter τ , and base measure P0 (Richardson et al., 1997). Finally,

SSP(Lπ, P0) denotes the law of a (univariate) species sampling process with weights distri-

bution defined by Lπ and base measure P0 (Pitman, 1996). Recall that a concise account of

SSPs, including their associated exchangeable probability partition function (EPPF), predic-

tion rule, and notable special cases of SSPs, is provided in Section S.1 of the Supplement. In

the following, P0 always indicates a generic non-atomic deterministic distribution.
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In order to highlight the comprehensive nature of mSSP and its subclass given by rmSSPs,

we now show that several popular classes of dependent models are subclasses of rmSSPs and

hence, a fortiori, mSSP.

Example 1 (Hierarchical processes). Assume the distribution of (P1, . . . , PJ) coincides with

any of the hierarchical specifications listed in Table 1.

Table 1: Hierarchical processes (Teh et al., 2006; Camerlenghi, Lijoi, Orbanz, et al., 2019; Bassetti

et al., 2020)

Hierarchical Dirichlet Process (HDP) Pj | Q
iid∼ DP(α,Q), Q ∼ DP(α0, P0)

Hierarchical Pitman-Yor Process (HPY) Pj | Q
iid∼ PYP(σ, α,Q), Q ∼ PYP(σ0, α0, P0)

Hierarchical normalized completely random measure (HNRMI) Pj | Q
iid∼ NRMI (ρ, c,Q) , Q ∼ NRMI (ρ0, c0, P0)

Hierarchical Dirichlet-Multinomial (HDM): Pj | Q
iid∼ DMM(τ,Q), Q ∼ DMM0(τ0, P0)

Hierarchical Gnedin Process (HGN) Pj | Q
iid∼ GN(γ,Q), Q ∼ GN(γ0, P0)

Hierarchical Species Sampling Process (HSSP) Pj | Q
iid∼ SSP(Lπ,j, Q), Q ∼ SSP(Lπ,0, P0)

Since
∑

h′≥0, π
(j)
j,h′

a.s.
= 0, for any j ∈ [J ], (P1, . . . , PJ) is trivially a rmSPP.

Remark 1. SSPs are defined in terms of a non-atomic base measure P0 (Pitman, 1996).

Hence, writing SSP(Lπ,j , Q) in Table 1 represents an abuse of notation. However, since the

extension to the case where the “base measure” Q can be an atomic discrete random measure

is immediate, we will also employ it in the sequel. Furthermore, after marginalizing out Q, we

are back to the definition of mSSP with a non-atomic base measure.

Example 2 (Nested processes). Assume the distribution of (P1, . . . , PJ) corresponds to any

of the nested constructions listed in Table 2.

Table 2: Nested processes (Rodŕıguez et al., 2008; Zuanetti et al., 2018)

Nested Dirichlet Process (NDP) Pj | Q
iid∼ Q, Q ∼ DP(α,DP(β, P0))

Nested Pitman-Yor Process (NPY) Pj | Q
iid∼ Q, Q ∼ PYP(σα, α,PYP(σβ, β, P0))

Nested Dirichlet-Multinomial (NDM) Q
iid∼ Q, Q ∼ DMMα(τα,DMMβ

(τβ, P0))

Nested Gnedin Process (NGN) Pj | Q
iid∼ Q, Q ∼ GN(γα,GN(γβ, P0))

Nested Species Sampling Process (NSSP) Pj | Q
iid∼ Q, Q ∼ SSP(Lπ,0, SSP(Lπ, P0))

Since
∑

h′≥0, π
(j)
j,h′

a.s.
= 0, for any j ∈ [J ], (P1, . . . , PJ) is a rmSPP.

Example 3 (Additive processes). Assume the distribution of (P1, . . . , PJ) coincides with any

of the additive specifications listed in Table 3.
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Table 3: Additive processes (Müller et al., 2004)

Additive Dirichlet Process (+DP) Pj = ϵj Q0 + (1− ϵj)Qj, Qj
ind∼ DP(αj, P0), j = 0, 1, . . . , J

Additive Pitman-Yor Process (+PY) Pj = ϵj Q0 + (1− ϵj)Qj, Qj
ind∼ PYP(σj, αj, P0), j = 0, 1, . . . , J

Additive Dirichlet-Multinomial (+DM) Pj = ϵj Q0 + (1− ϵj)Qj, Qj
ind∼ DMM(τj, P0), j = 0, 1, . . . , J

Additive Gnedin Process (+GN) Pj = ϵj Q0 + (1− ϵj)Qj, Qj
ind∼ GN(γj, P0), j = 0, 1, . . . , J

Additive Species Sampling Process (+SSP) Pj = ϵj Q0 + (1− ϵj)Qj, Qj
ind∼ SSP(Lπ,j, P0), j = 0, 1, . . . , J

In this case, the idiosyncratic components are non-zero with positive probability. However,

it is simple to see that for any pair (Pj , Pk) the required independence condition holds, i.e.,

π(j) ⊥ π(k). Thus, (P1, . . . , PJ) is a rmSSP.

Example 4. (Completely random vectors, Catalano, Lijoi, et al., 2021). If (P1, . . . , PJ) is

distributed according to any of the following:

• GM-dependent DP (GM-DP, Lijoi, Nipoti, et al., 2014):

Pj =
µ0 + µj

µ0(X) + µj(X)
, µ0 ∼ CRM((1− z) exp{−s}

s , c, P0), µj
ind∼ CRM(z exp{−s}

s , c, P0)

• GM-dependent σ-stable (GM-σ, Lijoi, Nipoti, et al., 2014):

Pj =
µ0 + µj

µ0(X) + µj(X)
, µ0 ∼ CRM((1− z)σs

−1−σ

Γ(1−σ) , c, P0), µj
ind∼ CRM(z σs−1−σ

Γ(1−σ) , c, P0)

then, for any pair (Pj , Pk) we have π(j) ⊥ π(k) and, hence, (P1, . . . , PJ) is a rmSPP.

Moreover, if (P1, . . . , PJ) is distributed according to a normalized compound random measures

vector (Griffin et al., 2017), then
∑

h′≥0 π
(j)
j,h′

a.s.
= 0 for any j ∈ [J ] and, hence, (P1, . . . , PJ) is a

rmSPP.

Example 5 (Hidden hierarchical DP). (P1, . . . , PJ) is distributed as a Hidden Hierarchical

Dirichlet Process (HHDP, James, 2008; Lijoi, Prünster, et al., 2023) if

Pj | Q
iid∼ Q, Q | Q0 ∼ DP(α,DP(β,Q0)) Q0 ∼ DP(β0, P0)

then
∑

h′≥0 π
(j)
j,h′

a.s.
= 0 holds for any j ∈ [J ], and (P1, . . . , PJ) is a rmSPP.

Example 6 (Semi hierarchical DP). (P1, . . . , PJ) is distributed according to a semi– hierar-

chical Dirichlet Process (semi-HDP, Beraha et al., 2021) if

Pj | Q
iid∼ Q, Q | Q0 ∼ DP(α,DP(β, κP0 + (1− κ)Q0)), Q0 ∼ DP(β0, P0).

Also in this case, we have
∑

h′≥0 π
(j)
j,h′

a.s.
= 0 for any j ∈ [J ] and (P1, . . . , PJ) is a rmSPP.

Example 7 (Processes based on stick-breaking constructions). Assume the distribution of

(P1, . . . , PJ) coincides with any of the following:

• nested common atoms process (nCAM, Denti et al., 2023), which is given by

Pj | Q
iid∼ Q, Q =

∑
s≥1

πsδGs , Gs =
∑
t≥1

ωt,sδθt , (πs)s≥1 ∼ GEM(α), (ωt,s)t≥1
iid∼ GEM(β);
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• tree stick-breaking process with covariates (treeSB, Horiguchi et al., 2024), which corre-

spond to

Pj ∼ treeSB(P0, {Fj,ϵ},T ).

Since
∑

h′≥0 π
(j)
j,h′

a.s.
= 0 for any j ∈ [J ], one has that (P1, . . . , PJ) is a rmSPP.

Example 8 (Vectors of normalized independent finite point processes). If the distribution

(P1, . . . , PJ) coincides with a Vectors of finite Dirichlet process (Vec-FDP, Colombi et al.,

2025), i.e., (P1, . . . , PJ) ∼ Vec-FDP(Λ, γ, P0), then
∑

h′≥0 π
(j)
j,h′

a.s.
= 0 for any j ∈ [J ] and, thus,

(P1, . . . , PJ) is a rmSPP.

Example 9 (Independent processes). If (P1, . . . , PJ) are independent SSPs, one trivially has

π(j) ⊥ π(k) for any j ̸= k. Thus, (P1, . . . , PJ) is a rmSSP.

3 Dependence structure and moments of mSSPs

3.1 Correlation and dependence

While mSSPs generalize SSPs, their essence lies in their multivariate nature and investigating

the dependence between elements of the vector (P1, . . . , PJ) is a crucial task, even more so since

this aspect is obviously absent in univariate SSPs. Here we provide a solid foundation for the

use of correlation as measure of dependence for mSSPs: we derive interpretable expressions for

the correlation between pairs of random probability measures in terms of observable variables,

prove that the correlation equals one if and only if the data are fully exchangeable, and,

furthermore, show how zero correlation characterizes independence for regular mSSP. First,

we compute the marginal expected value and variance of the Pj ’s, which will turn out to be

helpful in the sequel.

Proposition 3. If (P1, . . . , PJ) is an mSSP and Xj,i | (P1, . . . , PJ)
ind∼ Pj, for i = 1, 2, . . . and

j = 1, . . . , J , then

E[Pj(A)] = P0(A), Var[Pj(A)] = P(Xj,1 = Xj,2)P0(A)
[
1− P0(A)

]
.

Note that by marginal exchangeability, the tie probability P(Xj,i = Xj,m) between observa-

tions from the same population j does not depend on the indexes (i,m). Moreover, using

representation (2), one can rewrite the tie probability of an mSSP as

P(Xj,1 = Xj,2) =
∑
h≥1

E
[(

π
(j,k)
j,h

)2]
+
∑
h′≥1

E
[(

π
(j)
j,h′

)2]
. (4)

The link between tie probability and variance of a single homogeneous NRMI was first noted

in James, Lijoi, et al. (2006). Here we have established it for general mSSPs: since mSSPs do

not require specifying a law for the weights, this means that the link between variance and tie

probability is structural. However, this represents only our starting point in uncovering the
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crucial role played by tie probabilities for mSSPs.

The following simple, yet important, step consists of looking not only at the tie probabilities

within each population but also across. Also in this case, the tie probability across populations

j and k, P(Xj,i = Xk,m), does not depend on the indexes (i,m) and equals

P(Xj,1 = Xk,1) =
∑
h≥1

E
[
π
(j,k)
j,h π

(j,k)
k,h

]
. (5)

In section 4, we will also express the tie probability in terms of the more general law of the

partition induced at the level of the observables. We are now ready to compute the correlation

of mSSPs, a major highlight of this paper in terms of both understanding dependent models

and methodological implications.

Proposition 4. Let (P1, . . . , PJ) be an mSSP, Xj,i | (P1, . . . , PJ)
ind∼ Pj, for i = 1, 2, . . . and

j = 1, . . . , J and A a (measurable) set such that 0 < P0(A) < 1. Then we have

Cor[Pj(A), Pk(A)] =
P(Xj,1 = Xk,1)√

P(Xj,1 = Xj,2)
√

P(Xk,1 = Xk,2)
∀j ̸= k ∈ [J ].

This key result has several intertwined ramifications. First, it solves the open problem of

identifying the reason for the correlation not to depend on the evaluation set A, which was

observed on a case by case basis in most currently employed models: by Proposition 4 for

any mSSM, the pairwise correlation between its elements is expressed exclusively in terms of

tie probabilities within and across groups; hence, by (4)–(5) it depends only on the weights

of the mSSP and it cannot depend on set A, which is characterized in terms of locations.

Second, Proposition 4 implies that correlation between random probabilities is a consequence

uniquely of ties between the observable species. Thus, the dependence boils down to ties across

populations and the learning mechanism runs exclusively through the ties. Further insights

on correlation as a measure of global dependence are collected in the following corollary.

Corollary 1. Let (P1, . . . , PJ) be an mSSP, Xj,i | (P1, . . . , PJ)
ind∼ Pj , for i = 1, 2, . . . and

j = 1, . . . , J , and A is a (measurable) set such that 0 < P0(A) < 1. Then, for any j ̸= k ∈ [J ],

we have

(c-i) Cor[Pj(A), Pk(A)] ≥ 0;

(c-ii) Cor[Pj(A), Pk(A)] = 0 iff P(Xj,1 = Xk,1) = 0 iff E[πj,hπk,h] = 0, for any h;

(c-iii) If Pj and Pk are equal in distribution, then Cor[Pj(A), Pk(A)] = P(Xj,1 = Xk,1)/P(Xj,1 =

Xj,2)

Remark 2. The third statement is particularly appealing from an intuitive standpoint: in

the common situation of equal marginals, one can think of correlation as the ratio of the

probabilities of, respectively, “tie across groups” and “tie within a group”. Implicitly, this also

ensures that the tie probability “across groups” is always smaller than, or equal to, the one

“within a group”, which is a reasonable and appealing feature. See also Durante et al. (2025)
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for a discussion in the context of multilayer networks, where this ordering can be recast as a

desirable generalized homophily property.

Proposition 1 links correlation among pairs of Pj ’s with properties of observable quantities,

providing both an intuitive and rigorous foundation to the use of correlation as a measure

of dependence. However, this leaves an important question unanswered: how well does the

correlation capture dependence among different processes? Are the extreme situations of full

exchangeability, i.e., maximal dependence, and independence recovered when the correlation

equals one and zero, respectively? The next Proposition shows that a correlation equal to one

implies maximal dependence, that is, full exchangeability, of the observables.

Proposition 5. Let (P1, . . . , PJ) be an mSSP, Xj,i | (P1, . . . , PJ)
ind∼ Pj , for i = 1, 2, . . . and

j = 1, . . . , J . Then, for any j ̸= k ∈ [J ], we have

Cor[Pj(A), Pk(A)] = 1 if and only if Pj
a.s.
= Pk

and X = (Xℓ,i, i ≥ 1, ℓ ∈ {j, k}) is exchangeable.

Corollary 1 and Proposition 5 jointly provide a straightforward interpretation of what happens

when the probability of a tie across groups approaches the probability of a tie within: the

correlation increases towards one and the dependence among the observations shifts from

partial exchangeability towards the extreme of full exchangeability.

The other extreme case, namely independence, is harder to recover from a situation of zero

correlation. However, if we restrict attention to rmSSPs, we are able to show that it is im-

possible to construct zero-correlated rmSSPs whose components are not pairwise independent.

This yields the desired characterization, but also highlights the natural role played by rmSSPs

within the general class of mSSP.

Theorem 6. Let (P1, . . . , PJ) be an rmSSP. Then, for any j ̸= k ∈ [J ], we have

Cor[Pj(A), Pk(A)] = 0 if and only if Pj ⊥ Pk.

Hence, within the class of rmSSP, on one hand, correlation equal to one implies exchangeability

and, on the other hand, correlation equal to zero implies independence among the Pj ’s and

across groups of observations.

Remark 3. Not all rmSSPs can achieve correlation exactly equal to zero or one, at least in

their standard definitions. To fix ideas, consider rmSSPs lacking idiosyncratic and improper

components (i.e.,
∑

h≥1 π
(i,j)
j,h

a.s.
= 1); one remarkable instance is given by hierarchical construc-

tions. For these processes, the situation of independence across groups is to be interpreted as a

limiting case. For example, J independent DPs arise from the HDP only if we let α0 → ∞. To

make things concrete and highlight how much literature we cover with mSSPs, Table 4 presents

the correlation, probability of ties, and the values of hyperparameters to attain independence

and exchangeability for a wide variety of models.
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From an inferential perspective, the dependence among the latent (P1, . . . , PJ) plays a key

instrumental role, since it induces dependence among the observations. We have already

recovered the extreme cases of exchangeability and independence of the observables as corre-

sponding to, respectively, correlation one and zero of pairs of Pj ’s. Nonetheless, the following

results, which hold for the entire class of mSSPs, highlight how the correlation among observ-

ables coincides with the tie probability. Further, we stress the implications on the induced

dependence among the data X.

Proposition 7. Let (P1, . . . , PJ) be an mSSP, Xj,i | (P1, . . . , PJ)
ind∼ Pj , for i = 1, 2, . . . and

j = 1, . . . , J , and assume X = R. Then, for any j, k ∈ [J ] and any i,m, we have

Cor(Xj,i, Xk,m) = P(Xj,i = Xk,m).

Note that Proposition 7 holds true both within (i.e., j = k) and across (i.e., j ̸= k) groups,

and thus, also for (univariate) SSP.

Corollary 2. Let (P1, . . . , PJ) be an mSSP, Xj,i | (P1, . . . , PJ)
ind∼ Pj , for i = 1, 2, . . . and

j = 1, . . . , J , and assume X = R. Then for any j ̸= k ∈ [J ]

(c-i) Cor(Xj,i, Xk,m) ≥ 0;

(c-ii) Cor(Xj,i, Xk,m) = 0 iff P(Xj,i = Xk,m) = 0 iff Xj,i ⊥ Xk,m;

(c-iii) Cor(Xj,i, Xk,m) = 0 iff E[πj,hπk,h] = 0, for any h.

3.2 Higher moments of mSSPs

We now derive both marginal and mixed moments of any order. These can also be seen as

generalizations, to all SSPs and mSSPs, of the powerful results on joint moments of normalized

completely random measures (James, Lijoi, et al., 2006) and of hierarchical normalized com-

pletely random measures (Camerlenghi, Lijoi, Orbanz, et al., 2019), which leverage the Laplace

functional characterization of completely random measures. Here we show that moments can

be computed in the class of mSSPs even for elements unrelated to completely random measures

and/or to hierarchical processes. The following two propositions provide the expressions for

the marginal moments.

Proposition 8. Let (P1, . . . , PJ) be an mSSP, Xj,i | (P1, . . . , PJ)
ind∼ Pj , for i = 1, 2, . . . and

j = 1, . . . , J . Then, for every q ∈ N,

E[Pj(A)q] = E
[
P0(A)

K
(j)
1:q

]
,

where K
(j)
1:q is the random number of unique species in a sample of size q from Pj.
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Table 4: Correlation, tie probabilities and extreme cases. From left to right: type of mSSP (notation

defined in Examples of Section 2.2); pairwise correlation; probability of tie across and within groups;

values to which the hyperparameters should converge for the correlation to converge, respectively,

to 0 and 1 (while P (Ties Within) does not converge to 0 or 1).

Process Correlation P (Ties Across) P (Ties Within) Indep. Exchang.

HDP
1 + α

1 + α + α0

1

1 + α0

1 + α + α0

(1 + α) (1 + α0)
α0 → +∞ α → +∞

HPY
(1 + α)(1− σ0)

(1− σσ0) + α(1− σ0) + α0(1− σ)

1− σ0

1 + α0

(1− σσ0) + α(1− σ0) + α0(1− σ)

(1 + α) (1 + α0)

α0 → +∞
or σ0 → 1

α → +∞
or σ → 1

HDM
(1 + τ0)(1 + τ M)

(1 + τ M)(1 + τ0M0)− ττ0(M − 1)(M0 − 1)

1 + τ0
1 + τ0M0

(1 + τ M)(1 + τ0M0)− ττ0(M − 1)(M0 − 1)

(1 + τ M)(1 + τ0M0)
M0 → +∞ M → +∞

HGN
γ0(γ + 1)

(γ + γ0)

2γ0
γ0 + 1

2(γ + γ0)

(γ + 1)(γ0 + 1)
γ0 → 0 γ → 0

HSSP
EPPF(2)

1,0(2)

EPPF(2)

1,1(2)+EPPF
(2)

2,1(1,1)EPPF
(2)

1,0(2)

⋆

EPPF
(2)
1,0(2) EPPF

(2)
1,1(2) + EPPF

(2)
2,1(1, 1)EPPF

(2)
1,0(2) EPPF

(2)
1,0(2) = 0 EPPF

(2)
1,1(2) = 0

NDP
1

1 + α

1

(1 + α)(1 + β)

1

1 + β
α → +∞ α → 0

NPY
1− σα

1 + α

(1− σα)(1− σβ)

(1 + α)(1 + β)

1− σβ

1 + β

α → +∞
or σα → 1

(α, σα) →
→ (0, 0)

NDM
1 + τα

1 + ταMα

(1 + τα)(1 + τβ)

(1 + ταMα)(1 + τβMβ)

1 + τβ
1 + τβMβ

Mα → +∞ Mα → 1

NGN
2γα

γα + 1

4γαγβ
(γα + 1)(γβ + 1)

2γβ
γβ + 1

γα → 0 γα → 1

NSSP EPPF
(2)
1,0(2) EPPF

(2)
1,0(2)EPPF

(2)
1,1(2) EPPF

(2)
1,1(2) EPPF

(2)
1,0(2) = 0 EPPF

(2)
1,0(2) = 1

+DP

ϵjϵk
1 + α0√(

ϵ2j
1 + α0

+
(1− ϵj)

2

1 + αj

)(
ϵ2k

1 + α0

+
(1− ϵk)

2

1 + αk

) ϵjϵk
1 + α0

ϵ2j
1 + α0

+
(1− ϵj)

2

1 + αj

ϵ = 0 ϵ = 1

+PY

ϵjϵk (1− σ0)

1 + α0√(
ϵ2j (1− σ0)

1 + α0

+
(1− ϵj)

2 (1− σj)

1 + αj

)(
ϵ2k (1− σ0)

1 + α0

+
(1− ϵk)

2 (1− σk)

1 + αk

) ϵjϵk (1− σ0)

1 + α0

ϵ2j (1− σ0)

1 + α0

+
(1− ϵj)

2 (1− σj)

1 + αj

ϵ = 0 ϵ = 1

+DM

ϵjϵk(1 + τ0)

1 + τ0M0√(
ϵ2j(1 + τ0)

1 + τ0M0

+
(1− ϵj)

2(1 + τj)

1 + τj Mj

)(
ϵ2k(1 + τ0)

1 + τ0M0

+
(1− ϵk)

2(1 + τk)

1 + τk Mk

) ϵjϵk(1 + τ0)

1 + τ0M0

ϵ2j(1 + τ0)

1 + τ0M0

+
(1− ϵj)

2(1 + τj)

1 + τj Mj

ϵ = 0 ϵ = 1

+GN

ϵjϵk 2γ0
γ0 + 1√(

ϵ2j 2γ0

γ0 + 1
+

(1− ϵj)
2 2γj

γj + 1

)(
ϵ2k 2γ0
γ0 + 1

+
(1− ϵk)

2 2γk
γk + 1

) ϵjϵk 2γ0
γ0 + 1

ϵ2j 2γ0

γ0 + 1
+

(1− ϵj)
2 2γj

γj + 1
ϵ = 0 ϵ = 1

+SSP
ϵjϵkEPPF

(2)

1,0(2)√
(ϵ2jEPPF

(2)

1,0(2)+(1−ϵj)2EPPF
(2)

1,1(2))(ϵ
2
kEPPF

(2)

1,0(2)+(1−ϵk)2EPPF
(2)

1,1(2))

ϵjϵkEPPF
(2)
1,0(2) ϵ2jEPPF

(2)
1,0(2) + (1− ϵj)

2EPPF
(2)
1,1(2) ϵ = 0 ϵ = 1

GM-DP
(1− z)c

1 + c
3F2(a, 1, 1; b, b; 1)

⋆ (1− z)c

(1 + c)2
3F2(a, 1, 1; b, b; 1)

⋆⋆ 1

1 + c
z = 1 z = 0

GM-σ (1− z)I(c, z)⋆⋆⋆ (1− z)(1− σ)I(c, z) 1− σ

HHDP 1− αβ0

(1 + α)(β0 + β + 1)

1

β0 + 1
+

β0

(1 + α)(1 + β)(1 + β0)

1 + β + β0

(1 + β) (1 + β0)

(α, β0) →
→ (+∞,+∞)

α → 0

nCAM 1− βα

(2β + 1)(1 + α)

1

1 + α

(
1

1 + β
+

α

2β + 1

)
1

1 + β
None α → 0

⋆ EPPF·
·,1 and EPPF·

·,0 are induced by Lπ,1 = . . . = Lπ,J and Lπ,0, respectively.
⋆⋆

3F2 is the generalized hypergeometric function and a = α(1− z) + 2, b = α+ 2 ⋆⋆⋆ I(c, z) = 1
σ

∫ 1
0

w1/σ−1

[1+z(1−ω1/σ)σ−z(1−ω)]
dω

Proposition 9. Let (P1, . . . , PJ) be an mSSP and {A1, . . . , Ah} be pairwise disjoint sets.

Then, for any sequence q1, q2, . . . , qh, with qi ∈ N for i = 1 . . . , h, we have

E[Pj(A1)
q1 · · ·Pj(Ah)

qh ] = E
[
P0(A1)

K
(j)
1:q1 P0(A2)

K
(j)
q1+1:q2 · · ·P0(Ah)

K
(j)
qh−1+1:qh | E̸=

]
P(E̸=),

where K
(j)
a:b is the random number of species in the “block of observations” from the a-th to the

b-th observation, in a sample of size q1 + · · · + qh from Pj, and E̸= is an event that occurs if

no shared species are recorded across the different groups of observations.
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The following two theorems provide the expressions for the mixed moments.

Theorem 10. Let (P1, . . . , PJ) be an mSSP, Xj,i | (P1, . . . , PJ)
ind∼ Pj , for i = 1, 2, . . . and

j = 1, . . . , J . Then, for any sequence q1, q2, . . . , qJ , with qi ∈ N for i = 1 . . . , J , we have

E[P1(A)q1 · · ·PJ(A)qJ ] = E
[
P0(A)

Kq1,...,qJ
]
,

where Kq1,...,qJ is the overall number of species observed in a sample that contains qj observa-

tions from Pj, for j = 1, . . . , J .

Theorem 11. Let (P1, . . . , PJ) be an mSSP and {A1, . . . , AJ} be pairwise disjoint (measurable)

sets. Then, for any sequence q1, q2, . . . , qJ , with qi ∈ N for i = 1 . . . , J , we have

E[P1(A1)
q1 · · ·PJ(AJ)

qJ ] = E

[
P0(A1)

K
(1)
1:q1 · · ·P0(AJ)

K
(J)
1:qJ | E̸=

]
P(E̸=),

where K
(j)
1:qj

is the number of observed species from population j, in a sample which contains

qj observations from Pj, for j = 1, . . . , J .

Importantly, these results showcase that higher-order moments of an mSSP evaluated on (mea-

surable) sets can be meaningfully interpreted in terms of simple observable quantities like the

random number of observed species within and across groups. Hence, interpretability is not

unique to correlation.

4 Partially exchangeable partition function

In the exchangeable case, the random partition induced by a discrete nonparametric prior

is characterized by the exchangeable partition probability function (EPPF), a concept intro-

duced in Pitman (1995). The EPPF plays a fundamental role across several domains, in-

cluding combinatorics, stochastic process theory, population genetics, Bayesian statistics and

machine learning; see Pitman (2006) and references therein. It also underpins models in ecol-

ogy and natural language processing, where exchangeable clustering structures naturally arise.

The EPPF associated with the DP corresponds to Ewens’ sampling formula (Antoniak, 1974;

Ewens, 1990); see Crane (2016) and Tavaré (2021) accounts of its widespread applications.

Moving from exchangeability to partial exchangeability, the counterpart of the EPPF is the

partially exchangeable partition probability function (pEPPF), which characterizes the ran-

dom partition induced by a partially exchangeable array. This concept is different from the one

introduced in Pitman (1995), which is unrelated to the original definition of partial exchange-

ability in the sense of de Finetti that we adopt here. The notion of pEPPF first appeared in

Leisen et al. (2011) and Lijoi, Nipoti, et al. (2014) for specific instances of dependent processes,

and it started being leveraged in a systematic way for other subclasses of dependent processes

only recently in, e.g., Camerlenghi, Lijoi, and Prünster (2017), Camerlenghi, Lijoi, Orbanz,

et al. (2019), Camerlenghi, Dunson, et al. (2019), Beraha et al. (2021), Lijoi, Prünster, et al.
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(2023), and Denti et al. (2023). Its absence from the classical probabilistic literature may stem

from the fact that, unlike in the exchangeable setting where the EPPF can often be defined

directly without invoking an associated exchangeable sequence, the partially exchangeable

case lacks a similarly tractable direct construction. Instead, the pEPPF arises naturally by

marginalizing a partially exchangeable array of random elements, which represents the canon-

ical approach to deriving the corresponding random partition within the BNP framework. In

multi-population species sampling problems, where the values sampled from P0 serve solely

as species labels with no numerical meaning, the pEPPF uniquely determines the marginal

likelihood of the observations. Similarly, in the context of model-based clustering or latent

multi-level modeling, the pEPPF encapsulates the underlying clustering mechanism. Impor-

tantly, from a computational perspective, the pEPPF also plays a pivotal role as it provides

the key ingredient for deriving marginal posterior sampling schemes.

Let us now formally introduce the pEPPF induced by any vector (P1, . . . , PJ) of random

probability measures with possibly discrete components. A sample (Xj,i : i ∈ [Ij ], , j ∈ [J ]),

where Ij denotes the sample size of group j and n =
∑J

j=1 Ij is the total sample size, induces

a random partition of the integers [n] based on the ties among the observations. To see

this, let the integers label the observations according to their order of arrival by group, that is,

observations are indexed first by group j = 1, . . . , J , and then by within-group order of arrival.

Specifically, observation Xj,i is associated with the label
∑j−1

j′=1 Ij′ + i, for any i = 1, . . . , Ij .

The resulting random partition can be usefully characterized by the corresponding pEPPF.

To this end, let D be the number of distinct values among the n =
∑J

j=1 Ij observations

in the sample (Xj,i : i ∈ [Ij ], j ∈ [J ]). For each group j, define the vector of frequency

counts nj = (nj,1, . . . , nj,D), where nj,d indicates the number of observations in the jth group

that coincide with the dth distinct value, indexed according to the order of arrival by groups.

Clearly, nj,d ≥ 0 and by construction
∑J

i=1 ni,d ≥ 1, since each distinct value must appear in

at least one group. The count nj,d = 0 indicates that the dth distinct value does not occur in

group j, while it is shared between groups k and l if and only if nk,d nl,d ≥ 1. The law of the

resulting random partition is characterized by its pEPPF, defined as

pEPPF
(n)
D (n1, . . . ,nJ) = E

[ ∫
XD
∗

D∏
d=1

P1(dxd)
n1,d . . . PJ(dxd)

nJ,d

]
, (6)

under the constraint that
∑D

d=1 nj,d = Ij for each j = 1, . . . , J , and where X denotes the

space in which the Xj,i’s take values, while XD
∗ denotes the subset of XD consisting of vectors

with all distinct entries. We stress that the expectation in (6) is taken with respect to the

joint distribution of the vector of random probability measures (P1, . . . , PJ), that is, the de

Finetti measure associated with the partially exchangeable array. An important special case is

immediately recovered when J = 1, namely the single population setting: indeed, the pEPPF

in (6) reduces to a standard EPPF. Moreover, if J = 2, the probability of a tie across groups

coincides with pEPPF
(2)
1 (1, 1).

Clearly, if (P1, . . . , PJ) is an mSSP, it induces a pEPPF as defined by (6). But what about
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the converse? Given a pEPPF, does there exist an mSSP, up to the choice of an independent,

non-atomic base measure P0, that generates it? This amounts to asking whether every pair of

pEPPF and independent non-atomic P0 determines a unique mSSP. The next result provides

an affirmative answer and, as a by-product, yields an intuitive generative construction.

Theorem 12. Let Πn be any pEPPF as in (6) and P0 be a non-atomic (deterministic) prob-

ability measure. Consider the partially exchangeable array X = (Xj,i : i ∈ N, j ∈ [J ]) such

that for any non-negative integers I1, . . . , IJ the variables (Xj,i : i ∈ [Ij ], j ∈ [J ]) follow the

generative scheme:

1. sample the random partition Πn from the given pEPPF;

2. conditionally on the partition Πn, sample from P0 the iid unique values associated with

each partition set.

Then, the de Finetti measure associated with X is the law of an mSSP.

Remark 4. At first glance, the previous result may seem surprising: any pEPPF in (6),

regardless of whether (P1, . . . , PJ) generating it is an mSSP or not, identifies an mSSP by

pairing it with an independent non-atomic base measure P0. The core idea behind such a

fundamental result is that the distribution of the weights of the directing probability measure

is what characterizes the partition induced by the ties of any (infinite) partially exchangeable

array. Hence, if the dependent process (P1, . . . , PJ) inducing the pEPPF is not an mSSP (for

instance, due to dependence between weights and locations), one can still identify an mSSP,

say (P ∗
1 , . . . , P

∗
J ), based on the same pEPPF. The two vectors (P1, . . . , PJ) and (P ∗

1 , . . . , P
∗
J )

will generally have different distributions, although they share the same pEPPF. In other

words, the pEPPF characterizes the multivariate partition structure, but not the law of the

partially exchangeable array. Recovering the latter requires specifying a mechanism for atom

assignment, with the independence required by mSSPs representing a simple and tractable

choice. Crucially, this implies that the random partition structure of any partially exchangeable

array can be studied via the pEPPF of an mSSP, making mSSPs the natural framework for

analyzing and understanding the discrete structure of arbitrary dependent vectors and partially

exchangeable partition models.

The notion of pEPPF also enables us to restate the pairwise correlation results from Sec-

tion 3.1 within its more general structure. For instance, one can express

Cor[Pj(A), Pk(A)] =
pEPPF

(2)
1 (1, 1)√

EPPF
(2)
j,1 (1)

√
EPPF

(2)
k,1(1)

,

where EPPFj denotes the marginal EPPF corresponding to Pj . Similarly, the correlation

between observations satisfies Cor(Xj,i, Xk,m) = pEPPF
(2)
1 (1, 1).

Finally, we record an alternative representation of the pEPPF in terms of the weights

associated with a proper mSSP.

18



Proposition 13. Let (P1, . . . , PJ) be a proper mSSP. Then

pEPPF
(n)
D (n1, . . . ,nJ) = E

[ ∑
h1 ̸=... ̸=hD

J∏
j=1

D∏
d=1

π
nj,d

j,hd

]
. (7)

5 Predictive structure and inference

In the exchangeable case, the predictive distribution of an SSP admits a simple and elegant

representation, with weights expressed as ratios of the associated EPPF (Pitman, 1996). The

sequential mechanism that generates these prediction rules is known as the generalized Chinese

restaurant process: observations correspond to customers entering a restaurant, each choosing

to sit either at an already occupied table or at a new one. Each table serves a unique dish

drawn independently from P0. The predictive distribution is given by

P
(
Xn+1 = x | X

)
=


EPPF

(n+1)
K (n1,...,nk+1,...,nK)

EPPF
(n)
K (n1,...,nk,...,nK)

if x = X∗
k and k = 1, . . . ,K

EPPF
(n+1)
K+1 (n1,...,nk,...,nK ,1)

EPPF
(n)
K (n1,...,nk,...,nK)

if x = X∗
K+1,

(8)

where (X∗
k : k = 1, . . . ,K) are the K distinct values observed among X1, . . . , Xn, appearing

with frequencies (n1, . . . , nK) and drawn i.i.d. from P0. These probabilities follow from condi-

tioning on the observed partition: the EPPF in the numerator is updated either by increasing

the count of an existing cluster or by adding a new singleton cluster. See Section S1 of the

Supplementary Material for further details.

In the partially exchangeable framework, the pEPPF associated with an mSSP naturally

gives rise to a multivariate generative mechanism, where predictive distributions are again

expressed as ratios of pEPPFs. We refer to this construction as the multivariate generalized

Chinese restaurant process (mgCRP). It differs both from the classical generalized Chinese

restaurant process and from common multi-population extensions typically modeled as restau-

rant franchises. Unlike the latter, we do not introduce multiple restaurants. Unlike the former,

although we retain a single restaurant in which each table serves a unique dish and a customer

at a new table receives a previously unserved dish, the allocation mechanism is more intricate.

Specifically, the probability that a customer sits at a given table depends not only on the

current seating configuration, but also on the group of the incoming customer and the group

membership of those already seated. Remarkably, these allocation probabilities can still be

expressed as ratios of pEPPFs, a fact that is both natural and striking. The resulting mgCRP

is formalized in the next proposition.

Proposition 14. Let X be a partially exchangeable array directed by a de Finetti measure

given by the law of an mSSP (P1, . . . , PJ). For any j ∈ [J ], the corresponding predictive
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distributions are characterized by an mgCRP of the form

Xj,Ij+1 | (Xj,1:Ij )
J
j=1 =


X∗

l w.p.
pEPPF

(n+1)
D (n1,...,[nj,1,...,nj,l+1,...,n1,D],...,nJ )

pEPPF
(n)
D (n1,...,[nj,1,...,nj,l,...,nj,D],...,nJ )

X∗
new w.p.

pEPPF
(n+1)
D+1 ([n1,0],[nj,1,...,nj,l,...,nj,D,1],...,[nJ ,0])

pEPPF
(n)
D (n1,...,[nj,1,...,nj,l,...,nj,D],...,nJ )

where (X∗
1 , . . . , X

∗
D) are the D unique values in (Xj,1:Ij )

J
j=1 listed in order of arrival by group,

n =
∑

j Ij, and X∗
new represents a new species sampled independently from P0.

Although the predictive scheme in Proposition 14 follows naturally from the structure of the

pEPPF and stands out for its theoretical elegance, its computational feasibility depends heav-

ily on the ability to evaluate ratios of pEPPFs. Unlike the case of univariate SSPs, where such

ratios are sometimes available in closed form, the multivariate setting rarely admits simple

analytic expressions. Exceptions are limited to trivial cases that reduce to univariate specifi-

cations, such as independent or almost surely identical Gibbs-type priors. Section S.1 details

explicit predictive schemes for specific univariate SSPs within the Gibbs-type family (Gnedin

and Pitman, 2006; Lijoi, Mena, et al., 2007a), arguably the most tractable generalization

of the DP (De Blasi et al., 2015). Nevertheless, it is important to note that mSSPs used

in Bayesian modeling give rise to pEPPFs that are obtained as mixtures of EPPFs. This

includes models such as the HSSP, NSSP, +SSP, and various combinations thereof. Thus, im-

plementable predictive sampling schemes can typically be derived through data augmentation

strategies that exploit the tractability of the underlying EPPFs. These techniques leverage

latent variables that simplify ratios of pEPPFs to ratios of products of EPPFs, greatly simpli-

fying computations. A prominent example is the Chinese restaurant franchise representation

for the HDP (Teh et al., 2006). The following examples present such augmented formulations

of the pEPPF, which enable tractable predictive schemes and facilitate the design of marginal

Gibbs samplers, for three large classes of regular mSSPs, namely HSSP, NSSP, and +SSP.

Let pEPPF
(n)
D,aug(n1, . . . ,nJ , ℓ, q) denote the augmented pEPPF, in the sense that the original

pEPPF can be recovered by summing over all possible values of the latent variables ℓ and q,

i.e., pEPPF
(n)
D (n1, . . . ,nJ) =

∑
ℓ,q pEPPF

(n)
D,aug(n1, . . . ,nJ , ℓ, q).

Example 1 (Continue). If (P1, . . . , PJ) is an HSSP, then

pEPPF
(n)
D,aug(n1, . . . ,nJ , ℓ, q) = EPPF

(ℓ·,·)
D,0 (ℓ·,1, . . . , ℓ·,D)

∏J
j=1 EPPF

(Ij)
ℓj,·,j

(qj,1, . . . , qj,ℓj,·),

(9)

where for j = 1, . . . , J , EPPF
(Ij)
ℓj,·,j

(qj,1, . . . , qj,ℓj,·) denotes the EPPF induced by Lπ,j, which

characterizes a latent partition of the Ij observations of group j into ℓj,· blocks of cardinalities

qj,1, . . . , qj,ℓj,· . Conditionally on these partitions, all the ℓ·,· =
∑J

j=1 ℓj,· blocks (we use the ·
notation indicates summation over the corresponding index set) are grouped into a coarser

partition of D blocks, each corresponding to a distinct observed species. The distribution of

this coarser partition is characterized by the EPPF
(ℓ·,·)
D,0 (ℓ·,1, . . . , ℓ·,D) induced by Q.
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Example 2 (Continue). If (P1, . . . , PJ) is an NSSP, then

pEPPF
(n)
D,aug(n1, . . . ,nJ , ℓ, q) = EPPF

(J)
R,0(ℓ1, . . . , ℓR)

∏R
r=1 EPPF

(I⋆r )
Dr

(q1,·, . . . , qDr,),

(10)

where EPPF
(J)
R,0(ℓ1, . . . , ℓR) denotes the EPPF induced by Lπ,0 that controls the clustering of

the group labels j = 1, . . . , J into R blocks (obtained from the ties among the Pj ’s). Let

P ⋆
r

iid∼ SSP(Lπ, P0) r = 1, . . . , R be the unique values of (Pj)
J
j=1 in order of arrival and let I⋆r =∑

j:Pj=P ⋆
r
Ij be the number of observations from the ℓr groups assigned to P ⋆

r . Conditionally

on this clustering of the groups, for r = 1, . . . , R, the EPPF
(I⋆r )
Dr

(q1,·, . . . , qDr,) describes the

distribution induced by P ⋆
r characterizing the partition of the I⋆r observations assigned to P ⋆

r

into Dr distinct species. Since the P
⋆
r ’s do not share atoms a.s., it follows that the total number

of distinct species is given by D =
∑R

r=1Dr.

Example 3 (Continue). If (P1, . . . , PJ) is a +SSP, then

pEPPF
(n)
D,aug(n1, . . . ,nJ , ℓ, q) =

J∏
j=1

ϵℓ0j (1− ϵj)
ℓj

J∏
j=0

EPPF
(ℓj)
Dj ,j

(qj,1, . . . , qj,Dj ), (11)

where ℓ0 and ℓj = Ij − ℓ0 denote, for each j ∈ [J ], the number of observations assigned to

the shared SSP Q0 and to the idiosyncratic SSP Qj , respectively, while ϵℓ0j (1 − ϵj)
ℓj is the

probability of the i.i.d. latent assignment of the Ij observations via Bern(ϵj). Conditionally on

these latent assignments, for j = 0, . . . , J , EPPF
(ℓj)
Dj ,j

(qj,1, . . . , qj,Dj ) is the EPPF induced by

Qj that governs the clustering of the ℓj observations assigned to Qj into Dj unique species.

Since the Qj ’s do not share species a.s., the total number of distinct species across all groups

is given by D =
∑J

j=0Dj .

The hierarchical representations of the pEPPF derived in (9), (10), and (11), expressed as

products of simple EPPFs in an augmented space, allow for simplifying the ratio in Proposi-

tion 14 into a product of tractable predictive expressions, analogous to those of the Chinese

restaurant process.

6 Multi-armed bandits for species discovery

Among the numerous application areas of dependent processes, which include density regres-

sion, spatio-temporal analysis, functional data, survival analysis, topic modeling, hierarchical

and multi-level clustering, and ANOVA-type models, here we focus on a multi-armed ban-

dit problem connected to species sampling. Embedding the analysis within the framework of

mSSMs offers a principled way to compare different classes of models. Our structural results

for mSSMs allow model parameters to be chosen so that relevant prior quantities coincide,

enabling fair performance comparisons among competing approaches. A systematic investiga-

tion of which models are preferable in specific settings is beyond the scope of this paper, but
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the general strategy is clear: calibrate prior parameters to match the aspects that are most

critical for the task at hand, and evaluate inferential performance accordingly. This will be

the focus of future work.

A Bayesian nonparametric approach to species sampling problems in the single population

case, i.e., J = 1, was introduced by Lijoi, Mena, et al. (2007a), where Bayesian analogs of the

classical Turing and Good-Toulmin estimators (Good, 1953; Good and Toulmin, 1956) were

derived. In this setting, a random probability measure P models the species proportions in

the population, and, given an observed sample, the main goal is to estimate the probability of

discovering a new species either at the next step or after an additional m unobserved draws.

Following Lijoi, Mena, et al. (2007a), there has been a rich literature exploring alternative

prior specifications, estimation of diverse functionals and quantities of interest, and a wide

range of applications. For detailed reviews, see De Blasi et al. (2015) and Balocchi, Favaro,

et al. (2025), and references therein.

The multi-sample setup with J populations modeled through a vector of dependent random

probability measures (P1, . . . , PJ) was first studied in Camerlenghi, Lijoi, and Prünster (2017).

A sequential perspective was adopted in Battiston et al. (2018) and Camerlenghi, Dumitrascu,

et al. (2020), with the goal of designing an optimal sequential sampling strategy to maximize

the diversity of the observed species. This involves deciding, at each step, which population

to sample from, while sequentially incorporating information from previously observed species

across populations. The problem naturally fits within the framework of multi-armed bandits,

where each arm represents a population and a unit reward is earned upon discovering a new

species. Such problems arise in ecology and biology, where sampling from diverse environments

aims to uncover new species, and in genomics, where the objective is often to detect as many

genetic variants as possible (see, e.g., Lijoi, Mena, et al., 2008; Masoero et al., 2022).

6.1 Real data

Here we consider a multi-armed bandit problem of trees’ species discovery, using the dataset

of South American tree species publicly available in the supplementary materials of Condit

et al. (2002). The dataset records 41,688 trees observed across 100 plots, comprising 802

distinct species. In accordance with Battiston et al. (2018), we aggregated the 100 plots

into four larger groups based on spatial location, joining columns in the dataset whose codes

begin with BCI, P, S, and C, respectively. These four groups define the J = 4 alternative

arms. The empirical distributions and empirical tie probabilities (i.e., relative frequencies)

for each group are shown in Figure 2. Further details on the dataset can be found in Pyke

et al. (2001), Condit et al. (2002), and Battiston et al. (2018). The four arms corresponding

to the trees’ populations in the four different regions are modeled as a vector of dependent

random probabilities (P1, . . . , P4), each representing a population whose species composition

is initially unknown, both in terms of presence of a species and relative abundance. Species

may be shared across arms, possibly with different frequencies, making the rmSSP framework
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Figure 2: Empirical distribution functions of the four groups (left) and empirical tie probabilities

(right), computed from the full dataset. In the left panel, species within each group are ordered

according to their frequency ranking in Group 2.

a natural modeling choice.

Within this setup, we compare the performance of six rmSSPs in maximizing the number of

distinct observed species in an additional sample. For each model, the sampling strategy to

achieve this goal consists of selecting at step n+ 1 the arm with the highest estimated proba-

bility of discovering a new species, based on observations collected up to step n. Specifically,

at each step we choose the arm j that maximizes P(Xj,Ij+1 /∈ Xpast | Xpast), where Xpast

denotes the previously observed species across all sites. We also contrast these model-based

approaches with a simple baseline that selects an arm uniformly at random at each step, which

we refer to as the uniform model.

The six rmSSP models we compare are: independent DP and PYP, additive DP and PYP, and

hierarchical DP and PYP. We assign hyperpriors to the concentration parameter in each DP-

based rmSSP and to both concentration and discount parameters in each PYP-based rmSSP.

To ensure a fair comparison, these hyperpriors are chosen so that the prior mean and variance

of the tie probabilities, within groups for all models and across groups for those that borrow

information, match across all six specifications. This calibration reflects two considerations.

First, in a species sampling problem, where our objective is to maximize the species diversity,

it is sensible to set the probability of not discovering a new species, i.e., the probability of ties,

equal across all models. Second, by the results of the previous section, the tie probabilities

effectively capture the dependence structure and information-sharing behavior for any rmSSP,

regardless of the specific application at hand. Full details on model definitions, sampling

algorithms, and hyperprior settings are provided in Section S.3 of the Supplementary Material.

Figure 3 showcases the average cumulative number of species discovered by the two hierarchical,

the two additive, and the two independent rmSSP models, each also compared to the uniform

model, as a function of the number of additional samples. Table 5 reports the average number

of new species discovered per sampling step. All results are averages based on 20 runs. In each
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Figure 3: Tree species data: cumulative number of species discovered as a function of the additional

sample size for each rmSSP model and the uniform baseline.

Tree data

Uniform DP PY +DP +PY HDP HPY

Avg. num. 0.2608 0.2965 0.3060 0.2900 0.3186 0.3115 0.3298

Table 5: Tree species data: Average number of new species discovered per sampling step for each

rmSSP model and the uniform baseline.

run, we begin with an initial sample of 30 observations per arm (drawn without replacement

from the full dataset), then sample 300 further observations sequentially according to each

strategy and record the species discoveries.

Several noteworthy insights emerge from this experiment: (a) All rmSSP models are clearly

superior to the uniform baseline. (b) The two PYP-based rmSSPs consistently outperform their

DP-based counterparts, thanks to the extra flexibility provided by the discount parameter,

which governs the rate at which new species appear. (c) With the exception of the +DP,

all models that borrow information across populations yield higher discovery rates than the

independent specifications. The +DPs weak performance stems from its underlying assumption

that shared-species frequencies are proportional across populations, which seems inappropriate

in this setting, and its lower flexibility compared to PYP, which prevents it from compensating

for this misspecification. To the best of our knowledge, this limitation of the +DP has not

been previously noted in the literature.

6.2 Synthetic data

The tree dataset exhibits high probabilities of ties across samples (see the right panel of Figure 2

and recall that such probabilities are bounded above by the probability of a tie within a sample)

and, thus, distributions in different samples are highly similar. This makes it quite apparent
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that borrowing information across groups is advantageous. Therefore, one could argue that

the setting considered is overly favourable to rmSSPs relative to the independent models. To

assess whether, and under which conditions, borrowing information may become detrimental,

we repeat the analysis on a simulated dataset. In the simulation experiment, we consider
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5e−04 1e−01 2e−04 2e−04 2e−04 1e−04 4e−05 5e−05

9e−05 2e−04 1e−01 6e−05 8e−04 5e−05 9e−05 7e−05

3e−04 2e−04 6e−05 1e−01 3e−05 6e−05 1e−04 2e−05

4e−05 2e−04 8e−04 3e−05 4e−01 2e−06 1e−06 5e−06

7e−05 1e−04 5e−05 6e−05 2e−06 4e−01 8e−04 4e−06

1e−04 4e−05 9e−05 1e−04 1e−06 8e−04 4e−01 1e−06

2e−05 5e−05 7e−05 2e−05 5e−06 4e−06 1e−06 4e−01

Group1

Group2

Group3

Group4

Group5

Group6

Group7

Group8

Group1 Group2 Group3 Group4 Group5 Group6 Group7 Group8

Prob. tie

0.1

0.2

0.3

0.4

Figure 4: Probabilities of ties based on the true distributions in the simulated scenario.

eight populations. The true distribution of each arm is supported on a subset of 2,500 species

randomly drawn from a total of 3,000, allowing for partial overlap of the supports across arms.

Each arm follows a Zipf distribution, where the probability assigned to the kth most frequent

species in population j is proportional to k−sj . We set sj = 1.3 for j = 1, 2, 3, 4 and sj = 2 for

j = 5, 6, 7, 8 (cf. Battiston et al., 2018). However, before assigning the Zipf probability mass

function, the 2,500 selected species in each population are randomly permuted, leading to

markedly different probability mass functions and low probabilities of ties across populations.

See Figure 4. This scenario represents a worst-case setting for non-independent rmSSPs:

although some species are shared across populations, borrowing information is undesirable.

Figure 5 and Table 6 report averages over 20 runs. Comparisons are made against both the

uniform model and the oracle model, which selects the arm with the highest true frequency of

unobserved species. The results show that even in this scenario, the hierarchical and additive

rmSSPs perform on par with the independent models, and close to the oracle in terms of

species discovery. This finding is reassuring, as it indicates that borrowing information, while

unnecessary here, does not degrade performance.

Simulated Scenario with low prob. of ties

Uniform DP PY +DP +PY HDP HPY Oracle

Avg. num. 0.2335 0.3317 0.3298 0.3312 0.3262 0.3322 0.3237 0.3467

RMSE NA 0.1563 0.0743 0.1621 0.0655 0.1929 0.0655 0

Table 6: Simulated scenario with low probability of ties across populations: Average number of

species discovered per sampling step (Avg. num.) and root mean squared error (RMSE) of the

estimated discovery probabilities in each population.
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Figure 5: Simulated scenario with low probability of ties across populations: Number of species discovered

as a function of the additional sample size in the rmSSPs, the uniform model, and the oracle model.

7 Conclusion

We introduced the class of mSSPs, a general framework extending Pitman’s classical theory

of species sampling models to the partially exchangeable setting. Our contribution is twofold.

First, the mSSP framework provides a unifying perspective that encompasses most existing

dependent nonparametric priors. It fundamentally advances the understanding of their be-

haviour by revealing that borrowing of information across groups is fully determined by ties

within and across groups. These insights lead to principled strategies for prior specification,

model calibration, and fair comparison across different subclasses of mSSPs. A systematic

empirical comparison of competing models will be pursued in future work.

Second, our approach is constructive. It provides a modular recipe for building new models

by combining EPPFs into structured dependence mechanisms. This allows for the design of

both new classes of mSSPs and novel models satisfying alternative probabilistic symmetries

beyond partial exchangeability. A first contribution along this path can be found in Fasano

et al. (2025).

In addition to the systematic performance comparison of existing mSSPs and the development

of new models, two further research directions emerge. Our finding that borrowing of infor-

mation is entirely governed by ties suggests that standard dependence measures may not be

well-suited to random discrete structures. This calls for a new theoretical framework based on

the role of ties in generating, interpreting, and quantifying dependence. A second, more prob-

abilistic direction is to develop a standalone framework for pEPPFs, decoupled from partially

exchangeable arrays, that incorporates any sequential generative construction.
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S.1 Some basics on (univariate) species sampling

In classical species sampling problems, a random sample (X1, . . . , Xn) is extracted from an

unknown and typically discrete distribution and each observed value corresponds to the species

of a drawn individual. Denoting with P the unknown distribution of species in the population,

we have

Xi | P
iid∼ P for i = 1, . . . , n.

To develop a Bayesian model for species sampling problems, a prior must be defined over the

unknown distribution P . In the univariate setting, the problem can be tackled relying on

the large class of priors provided by species sampling processes (SSP), introduced by Pitman

(1996) as a generalization of the Dirichlet process of Ferguson (1973).

Definition S.1 (SSP). A random probability measure P is a species sampling process (SSP)

if

P
a.s.
=
∑
h≥1

πhδθh +

1−
∑
h≥1

πh

P0,

where the atoms (θh)h≥1 are i.i.d. from the non-atomic distribution P0 and are independent of

the random sub-probability vector of the weights π = (πh)h. Moreover, if
∑

h≥1 πh
a.s.
= 1, P is

said proper.

The corresponding model is defined once the observations are sampled independently from

P given P .

Definition S.2 (SSM). An infinite sequence of random variables X1, X2, . . . follows a species

sampling model (SSM) if it is exchangeable with an SSP directing measure. That is

Xi | P
iid∼ P (i = 1, 2, . . .)

P ∼ SSP(Lπ, P0).
(S.1)
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Any sample (X1, . . . , Xn) arising from a P ∼ SSP(Lπ, P0) induces a random partition of

the labels of the observations in the sample, i.e., of [n] = {1, . . . , n}. More precisely, two

observation labels i and l belong to the same block of the partition of [n] (i.e., Xi and Xl

are clustered together) if and only if Xi = Xl. The discrete part of the SSP entails that

two observations are clustered together with positive probability since, unless
∑

h≥1 πh
a.s.
= 0,

P(Xi = Xl) > 0. The law of such a random partition (denoted Πn) of [n] is characterized by

the exchangeable partition probability functions (EPPF) (Pitman, 1996).

More precisely, let {C1, . . . , CK} an arbitrary partition of [n] for a given n ∈ N and nk =

|Ck| for k ∈ [K] then

P(Πn = {C1, . . . , Ck}) = EPPF
(n)
K (n1, . . . , nK). (S.2)

In words, EPPF
(n)
K (n1, . . . , nK) can be interpreted as the probability of observing a particular

(unordered) partition of n observations into K subsets of cardinalities {n1, . . . , nK}. Note that
the EPPF is defined on the space of the compositions of n, which can be interpreted as the

space of the frequency of the partition in a given arbitrary order (e.g., the order of arrival).

Let P =
∑

h≥1 πhδθh be a proper SSP. Then the induced EPPF can be computed as

EPPF
(n)
K (n1, . . . , nK) = E

[ ∑
h1 ̸=... ̸=hj

K∏
k=1

πnk
hk

]
. (S.3)

The EPPF characterizes the SSM (Pitman, 1996). For any n ∈ N, if (X1, . . . , Xn) arises from

an SSM, its law can be obtained hierarchically as

1. sample the random partition Πn from the induced EPPF obtained as in (S.3);

2. sample iid the unique values associated with each set in the partition from P0.

The EPPF and the SSP can also be characterized by a specific sequence of predictive distribu-

tions (Pitman, 1996) also known as the generalized Chinese restaurant process (gCRP). In the

culinary metaphor, we can think of observations corresponding to customers in a restaurant,

who arrive sequentially and sit at an already occupied table or a new table and each table

serves a different dish (iid sampled from P0).

It is theoretically straightforward to derive the predictive distribution associated with any

SSP via ratios of EPPFs as an application of the definition of conditional probability, leading

to

P
(
Xn+1 = x | X

)
=


EPPF

(n+1)
K (n1,...,nk+1,...,nK)

EPPF
(n)
K (n1,...,nk,...,nK)

if x = X∗
k and k = 1, . . . ,K

EPPF
(n+1)
K+1 (n1,...,nk,...,nK ,1)

EPPF
(n)
K (n1,...,nk,...,nK)

if x = X∗
K+1,

(S.4)

where (X∗
k : k = 1, . . . ,K) denote the K unique values of X1, . . . , Xn that were recorded with

frequency n1, . . . , nK and are iid sampled from P0. See Pitman (1996), Pitman (2006), Lee

et al. (2013), and Ghosal et al. (2017) for details and proofs about different characterizations

of (univariate) SSM.
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Although the analytical expression of the gCRP is available from the EPPF as shown

in (S.4), such an expression does not reduce to simple and tractable quantities in general.

However, a notable exception is the subclass of Gibbs-type prior (Gnedin et al., 2006; De

Blasi et al., 2015), which, thanks to the product partition form of the EPPF, allows the

ratio of EPPF in the gCRP to boil down to a simple ratio of constants for several notable

examples, as in the well-known Chinese restaurant franchise (CRP) (Blackwell et al., 1973)

induced by the Dirichlet process (DP) (Ferguson, 1973). The class of Gibbs-type prior is the

most natural tractable generalization of the DP (De Blasi et al., 2015) and it includes the

symmetric finite Dirichlet prior (Green et al., 2001), the Pitman-Yor process (PYP) (Pitman

and Yor, 1997), the normalized inverse Gaussian (NIG) (Lijoi et al., 2005), the normalized

generalized gamma process (NGGP) (Lijoi et al., 2007), mixture of finite symmetric Dirichlet

(Nobile, 1994; Richardson et al., 1997; Nobile and Fearnside, 2007; Miller et al., 2018) and

the mixture of DP (MDP) models (Antoniak, 1974). In the following sections, we recall the

analytical expression of the three different characterizations (i.e., SSP, EPPF, and gCRP) of

some relevant and tractable examples of Gibbs-type prior commonly used in Bayesian analysis.

S.1.1 Pitman-Yor process (PYP)

We say that an SSP(Lπ, P0) follow a Pitman-Yor process, i.e., P ∼ PYP(α, γ;P0), with P0 a

non-atomic measure if it is a proper SSP with Lπ ∼ GEM(α, γ), where the two parameters

GEM distribution, named after Griffiths, Engen, and McCloskey, can be thought as arising

from the stick-breaking construction where the πi’s are such that πi = vi
∏i−1

l=1 vl, with vi ∼
Beta(1− α, γ + iα), i ≥ 1, α ∈ [0, 1) and γ > −α.

The following EPPF characterizes the PYP

EPPF
(n)
K (n1, . . . , nK ;α, γ) =

∏K−1
k=1 (γ + k α)

(γ + 1)n−1

K∏
k=1

(1− α)nk−1, (S.5)

where (x)n = x(x+ 1) · · · (x+ n− 1) is the nth ascending factorial.

Denoting with X1, X2, . . . an SSM from P ∼ PYP(α, γ;P0), we can derive the well-known

gCRP of the PYP from the EPPF in (S.5) applying the definition of conditional probability.

P
(
Xn+1 = x | X

)
=

nk−α
γ+n if x = X∗

k and k = 1, . . . ,K

γ+αK
γ+n if x = X∗

K+1.
(S.6)

S.1.2 Dirichlet process (DP)

If we consider P ∼ PYP(α, γ;P0) as in the previous section and we restrict α = 0 and γ > 0

we obtain the relevant special case of the Dirichlet process, i.e., P ∼ DP(γ;P0). Thus we can

specialize the distribution of the weights to GEM(γ), the induced EPFF in (S.5) that boils
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down to

EPPF
(n)
K (n1, . . . , nK ;α, γ) =

γKΓ(γ)

Γ(γ + n)

K∏
k=1

(nk − 1)!, (S.7)

and the corresponding CRP

P
(
Xn+1 = x | X

)
=

 nk
γ+n if x = X∗

k and k = 1, . . . ,K

γ
γ+n if x = X∗

K+1.
(S.8)

S.1.3 Finite symmetric Dirichlet multinomial (symDM)

Here we consider an SSP P with a fixed known number M of species in the population (with

M ∈ N) that follow a finite-dimensional symmetric Dirichlet multinomial (symDM). That is,

for a fixed M ∈ N,

P =
M∑
h=1

πhδθh , (S.9)

where (π1, . . . , πM ) ∼ Dir(τ, . . . , τ) ⊥ θh
iid∼ P0. We write P ∼ DMM (τ, P0).

Then we can derive the induced EPFF as

EPPF
(n)
K (n1, . . . , nK) =

M !

(M −K)!

Γ(τ M)

Γ(n+ τ M)Γ(τ)K

K∏
k=1

Γ(nk + τ). (S.10)

and the corresponding gCRP

P
(
Xn+1 = x | X

)
∝

nk + τ if x = X∗
k and k = 1, . . . ,K

ρ(M −K)1(K ̸= M) if x = X∗
K+1.

(S.11)

S.1.4 Gnedin Process (GN)

Allowing for an unknown M in a finite-dimensional symmetric Dirichlet multinomial process,

the model becomes a mixture of symmetric Dirichlet models. A relevant example is the Gnedin

process (with discount parameter equals to −1). The corresponding EPPF is

EPPF
(n)
K (n1, . . . , nK) =

∞∑
m=1

EPPF
(n)
K (n1, . . . , nK | M = m) p(M = m), (S.12)

where EPPF
(n)
K (n1, . . . , nK | M = m) is the EPPF of the M -symmetric Dirichlet prior in

(S.10), with ρ = 1 and p(M = m) = γ(1−γ)m−1

m! , γ ∈ (0, 1).

The corresponding gCRP boils down to the following simple tractable expression

P
(
Xn+1 = x | X

)
∝

(nk + 1)(n−K + γ) if x = X∗
k and k = 1, . . . ,K

K2 −Kγ if x = X∗
K+1.

(S.13)

We denote the corresponding SSP with P ∼ GN(γ, P0).
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S.2 Proofs

S.2.1 Proof of Proposition 1

The proof follows trivially from the Definition of mSSP.

S.2.2 Proof of Proposition 2

Proof. To prove the statement, we want to show the non-trivial implication of the iff, i.e., if

(P1, P2) are an mSSP with non-atomic base measure P0 they can be rewritten as in (1), that

is

Pj
a.s.
=
∑
h≥1

π
(1,2)
j,h δθ0,h +

∑
h′≥1

π
(j)
j,h′δθj,h′ + π

(j)
j,0P0, for j = 1, 2. (S.14)

where
∑

h≥1 π
(1,2)
j,h +

∑
h′≥0 π

(j)
j,h′ = 1, for j = 1, 2, the atoms are independent from the weights

and such that θj,h
iid∼ P0, for j = 0, 1, 2, h = 1, 2, . . . and P[π(1,2)

1,h > 0, π
(1,2)
2,h > 0] > 0.

From the definition of mSSP, we write for j = 1, 2

Pj =
∑
h≥1

πj,hδθh +

1−
∑
h≥1

πj,h

P0 =
∑
h∈H

πj,hδθh +

(
1−

∑
h∈H

πj,h

)
P0,

where we denote by H := {1, 2, . . .} the set of the indexes of the two sums. Note that H :=

card(H) ∈ {0}∪N∪{∞}, and we use the convention that, for any (xh)h,
∑0

h=1 xh =
∑

h∈∅ xh =

0. We define π
(j)
j,0 := 1−

∑
h∈H πj,h and we partition H in {H0, H̄0}, where

H0 := {h ∈ H : Pr[π1,h > 0, π2,h > 0] > 0} = {h ∈ H : Pr[π1,hπ2,h > 0] > 0}

is the set of shared atoms and H̄0 = H \H0.

Let us define, for j = 1, 2,((
θ0,h, π

(12)
j,h

)
: h ∈ H0

)
:= ((θh, πj,h) : h ∈ H0) and

(
π
(j)
j,h : h ∈ H̄0

)
:=
(
πj,h : h ∈ H̄0

)
,

and θj,h
iid∼ P0, for j = 1, 2 and h ∈ H̄0, independent from all the previous random variables,

i.e.,
(
(θ0,h, π

(12)
j,h ) : h ∈ H0

)
and

(
π
(j)
j,h : h ∈ H̄0

)
.

Then note that, for j = 1, 2,∑
h∈H

πj,hδθh =
∑
h∈H0

πj,hδθh +
∑
h∈H̄0

πj,hδθh

and ∑
h∈H0

πj,hδθh =
∑
h∈H0

π
(12)
j,h δθ0,h and

∑
h∈H̄0

πj,hδθh =
∑
h∈H̄0

π
(j)
j,h δθj,h .

To conclude the proof, we just relabel the indexes in both H0 and H̄0 such that they are

ordered integers starting from 1 with no gaps and remap the elements in the corresponding

sums accordingly.

S.5



S.2.3 Proof of Proposition 3

Proof. By the law of iterated expectations, the first and second moments of Pj(A) are equal

to

E[Pj(A)] = P(Xj,i ∈ A) = P0(A)

E[Pj(A)2] = P(Xj,i ∈ A,Xj,l ∈ A), with i ̸= l.

Disintegrating with respect to {Xj,i = Xj,l} to recover independence leads to

P(Xj,i ∈ A,Xj,l ∈ A)

= P(Xj,i = Xj,l)P(Xj,i ∈ A,Xj,l ∈ A | Xj,i = Xj,l)

+ P(Xj,i ̸= Xj,l)P(Xj,i ∈ A,Xj,l ∈ A | Xj,i ̸= Xj,l)

= P(Xj,i = Xj,l)P0(A) + P(Xj,i ̸= Xj,l)P0(A)2.

Finally, Var[Pj(A)] = E[Pj(A)2]− E[Pj(A)]2 = P(Xj,i = Xj,l)P0(A)[1− P0(A)].

S.2.4 Proof of Proposition 4

Proof. For j ̸= k, by the law of iterated expectations, we get

E[Pj(A)Pk(A)] = P(Xj,i ∈ A,Xk,m ∈ A).

Disintegrating with respect to {Xj,i = Xk,m} to recover independence leads to

P(Xj,i ∈ A,Xk,m ∈ A)

= P(Xj,i = Xk,m)P(Xj,i ∈ A,Xk,m ∈ A | Xj,i = Xk,m)

+ P(Xj,i ̸= Xk,m)P(Xj,i ∈ A,Xk,m ∈ A | Xj,i ̸= Xk,m)

= P(Xj,i = Xk,m)P0(A) + P(Xj,i ̸= Xk,m)P0(A)2.

Thus, Cov[Pj(A), Pk(A)] = P(Xj,i = Xk,m)P0(A)[1−P0(A)]. The correlation is obtained using

Proposition 3.

S.2.5 Proof of Corollary 1

The proof follows trivially from Proposition 4.

S.2.6 Proof of Proposition 5

Proof. By definition of mSSP, we know that

Pj
a.s.
=
∑
h≥1

πj,hδθh +

1−
∑
h≥1

πj,h

P0 and Pk
a.s.
=
∑
h≥1

πk,hδθh +

1−
∑
h≥1

πk,h

P0.
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Moreover, by Cauchy-Schwarz inequality, we have a.s. that√√√√√∑
h≥1

π2
j,h +

1−
∑
h≥1

πj,h

2
√√√√√∑

h≥1

π2
k,h +

1−
∑
h≥1

πk,h

2

≥
∑
h≥1

πj,hπk,h +

1−
∑
h≥1

πj,h

1−
∑
h≥1

πk,h

 .

Assume by contradiction that the event {πj,h ̸= πk,h for at least one k} has positive probability.

This implies that with positive probability, the above inequality is strict and thus, with positive

probability, we have

P(Xj,1 = Xk,1 | Pj , Pk) <
√
P(Xj,1 = Xj,2 | Pj , Pk)

√
P(Xk,1 = Xk,2 | Pj , Pk)

which implies

P(Xj,1 = Xk,1) < P(Xj,1 = Xj,2)P(Xk,1 = Xk,2)

and

Cor[Pj(A), Pk(A)] < 1

. Therefore, we have πj,h = πk,h a.s., for all h, and thus Pj
a.s.
= Pk.

S.2.7 Proof of Theorem 6

Proof. Clearly Pj ⊥ Pk entails Cor[Pj(A), Pk(A)] = 0. We want to show that Cor[Pj(A), Pk(A)] =

0 entails Pj ⊥ Pk.

Let us consider the representation of (Pj , Pk) as mixtures of two components

Pj
a.s.
= ω

(j,k)
j

∑
h≥1

π̄
(j,k)
j,h δθh +

(
1− ω

(j,k)
j

)π̄
(j)
j,0P0 +

∑
h′≥1

π̄
(j)
j,h′δθj,h′


and

Pk
a.s.
= ω

(j,k)
k

∑
h≥1

π̄
(j,k)
k,h δθh +

(
1− ω

(j,k)
k

)π̄
(k)
j,0P0 +

∑
h′≥1

π̄
(k)
k,h′δθk,h′

 .

where

π̄
(j,k)
j,h =

π
(j,k)
j,h∑

ℓ≥1 π
(j,k)
j,ℓ

, π̄
(j)
j,h′ =

π
(j)
j,h′∑

ℓ≥0 π
(j)
j,ℓ

, and ω
(j,k)
j =

∑
h≥1

π
(j,k)
j,h .

Recall that by Proposition 4 and Corollary 1, Cor[Pj(A), Pk(A)] = 0 iff P(X1,j = X1,k) = 0.

Note that

P(Xj,1 = Xk,1) =
∑
h≥1

E
[
ω
(j,k)
j π̄

(j,k)
j,h ω

(j,k)
k π̄

(j,k)
k,h

]
≥ E

[
ω
(j,k)
j π̄

(j,k)
j,1 ω

(j,k)
k π̄

(j,k)
k,1

]
.
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Therefore, by Definition of rmSSP, we have that ω
(j,k)
j

a.s.
= ω

(j,k)
k

a.s.
= 0.

Indeed, if we assume by contradiction that (w.l.o.g.) P
(
ω
(j,k)
j > 0

)
> 0 than by Definition

3 we have that P
(
ω
(j,k)
j π̄

(j,k)
j,1 ω

(j,k)
k π̄

(j,k)
k,1 > 0

)
> 0 that entails

P(Xj,1 = Xk,1) ≥ E
[
ω
(j,k)
j π̄

(j,k)
j,1 ω

(j,k)
k π̄

(j,k)
k,1

]
> 0

that contradicts P(X1,j = X1,k) = 0. Since ω
(j,k)
j

a.s.
= ω

(j,k)
k

a.s.
= 0 we can rewrite

Pj
a.s.
= π̄

(j)
j,0P0 +

∑
h′≥1

π̄
(j)
j,h′δθj,h′

and

Pk
a.s.
= π̄

(k)
j,0P0 +

∑
h′≥1

π̄
(k)
k,h′δθk,h′

and therefore Pj ⊥ Pk.

S.2.8 Proof of Proposition 7

Proof. Define the random variable Z, so that Z = 1, if Xj,i = Xk,m, and Z = 0, otherwise.

Cov(Xj,i, Xk,m) = E [Cov(Xj,i, Xk,m | Z)] + Cov (E [Xj,i | Z] ,E [Xk,m | Z])

= E [Cov(Xj,i, Xk,m | Z)] + 0

= Cov(Xj,i, Xk,m | Z = 1)P(Xj,i = Xk,m)

= P(Xj,i = Xk,m)Var(X∗).

where X∗ ∼ P0 and Cov(Xj,i, Xk,m | Z = 1) = Var(X∗) is obtained since the conditioning

to Z = 1 implies that both observations are equal to the same atom, which is itself sampled

from P0. The final result follows trivially by dividing the expression of the covariance by√
Var(Xj,i)Var(Xk,m) = Var(Xj,i) = Var(X∗).

S.2.9 Proof of Corollary 2

The proof follows trivially from Proposition 7.

S.2.10 Proof of Proposition 8

Proof. Define Xj,1:q = (Xj,1, . . . , Xj,q),

E[Pj(A)q] = P(Xj,1:q ∈ Aq).

Disintegrate with respect to the random partition Π
(j)
q induced by the ties in Xj,1:q and taking

values in the set P(Xj,1:q) to recover independence and aggregate by symmetry induced by
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exchangeability. K
(j)
q denotes the number of sets in Π

(j)
q .

P (Xj,1:q ∈ Aq) =
∑

Π
(j)
q ∈P(Xj,1:q)

P
[
Xj,1:q ∈ Aq | Π(j)

q

]
P
(
Π(j)

q

)

=

q∑
s=1

P0(A)s
∑

Π
(j)
q ∈P(Xj,1:q):K

(j)
q =s

P
(
Π(j)

q

)

=

q∑
s=1

P0(A)
sP(K(j)

q = s) = E
[
P0(A)

K
(j)
q
]
.

S.2.11 Proof of Proposition 9

Proof. For notational convenience, we prove the proposition for h = 2. The general case can

be proven with the same argument. Notation is the same as in the proof of Proposition 7.

E[Pj(A1)
q1Pj(A2)

q2 ] = P (Xj,1:q ∈ Aq1
1 ×Aq2

2 ) ,

where q = q1 + q2. Denote now with Aq1,q2 ⊂ P(Xj,1:q) the set of all possible partitions Π
(j)
q

induced by the ties in Xj,1:q such that the elements in Xj,1:q1 and in Xj,q1+1:q2 do not have

ties. It follows that

P (Xj,1:q ∈ Aq1
1 ×Aq2

2 ) =P[(Xj,1:q ∈ Aq1
1 ×Aq2

2 ) ∩ (Π(j)
q ∈ Aq1,q2)]

=

q1∑
s1=1

q2∑
s2=1

P(Π(j)
q ∈ Aq1,q2 ,K

(j)
q1 = s1,K

(j)
q1+1:q2

= s2)

×P(Xj,1:q ∈ Aq1
1 ×Aq2

2 | Π(j)
q ∈ Aq1,q2 ,K

(j)
q1 = s1,K

(j)
q1+1:q2

= s2)

=

q1∑
s1=1

q2∑
s2=1

P0(A1)
s1P0(A2)

s2P(Π(j)
q ∈ Aq1,q2 ,K

(j)
q1 = s1,K

(j)
q1+1:q2

= s2)

=E
[
P0(A1)

K
(j)
q1 P0(A2)

K
(j)
q1+1:q2 | Π(j)

q ∈ Aq1,q2

]
P(Π(j)

q ∈ Aq1,q2).

S.2.12 Proof of Theorem 10

Proof.

E[P1(A)q1 · · ·PJ(A)
qJ ] = P

(
Xj,1:qj ∈ Aqj : j = 1, . . . , J

)
.
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Disintegrate with respect to the possible partitions Πq of X1:q1,...,1:qJ to recover independence

and aggregate by symmetry.

P
(
Xj,1:qj ∈ Aqj : j = 1, . . . , J

)
=

∑
Πq∈P(X1:q1,...,1:qJ

)

P
(
Xj,1:qj ∈ Aqj : j = 1, . . . , J | Πq

)
P
(
Πq

)
=

q∑
s=1

P0(A)s
∑

Πq∈P(X1:q1,...,1:qJ
):Kq1,...,qJ

=s

P
(
Πq

)
=

q∑
s=1

P0(A)sP(Kq1,...,qJ = s) = E
[
P0(A)Kq1,...,qJ

]
.

S.2.13 Proof of Theorem 11

Proof. First note that

E
( J∏

j=1

Pj(Aj)
qj

)
= P

(
X1:q1,...,1:qJ ∈

J×
j=1

A
qj
j

)
.

Denote now with Aq1,...,qJ ⊂ P(X1:q1,...,1:qJ ) the set of all possible partitions Πq of the elements

in X1:q1,...,1:qJ such that the elements in Xj,1:q1 and in Xj′,1:qj′
do not belong to the same set,

for any j ̸= j′ according to Πq.

P

(
X1:q1,...,1:qJ ∈

J×
j=1

A
qj
j

)
=P

[(
X1:q1,...,1:qJ ∈

J×
j=1

A
qj
j

)
∩ (Πq ∈ Aq1,...,qJ )

]

=P (Πq ∈ Aq1,...,qJ )P

(
X1:q1,...,1:qJ ∈

J×
j=1

A
qj
j | Πq ∈ Aq1,...,qJ

)

=

q1∑
s1=1

· · ·
qJ∑

sJ=1

P
(
Πq ∈ Aq1,...,qJ ,K

(1)
q1 = s1, . . . ,K

(J)
qJ

= sJ

)

× P

(
X1:q1,...,1:qJ ∈

J×
j=1

A
qj
j | Πq ∈ Aq1,...,qJ ,K

(1)
q1 = s1, . . . ,K

(J)
qJ

= sJ

)

=

q1∑
s1=1

· · ·
qJ∑

sJ=1

P0(A1)
s1 · · ·P0(AJ)

sJ

× P
(
Πq ∈ Aq1,...,qJ ,K

(1)
q1 = s1, . . . ,K

(J)
qJ

= sJ

)
= E

[
P0(A1)

K
(1)
q1 · · ·P0(AJ)

K
(J)
qJ | Πq ∈ Aq1,...,qJ

]
P(Πq ∈ Aq1,...,qJ ).
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S.2.14 Proof of Theorem 12

Proof. To prove the theorem, we first show that when the random array follows an mSSM,

then it can be obtained by sampling first the partition from the corresponding pEPPF and

then associating unique values sampled independently from P0 to each partition set. Formally,

for any family of sets (Aj,i : i ∈ [Ij ], j ∈ [J ]),

P [(Xj,i : i ∈ [Ij ], j ∈ [J ]) ∈ (Aj,i : i ∈ [Ij ], j ∈ [J ])]

=
∑

Πn∈P[Πn]P(X1:I1,...,1:IJ
)

P[(Xj,i : i ∈ [Ij ], j ∈ [J ]) ∈ (Aj,i : i ∈ [Ij ], j ∈ [J ]) | Πn]P[Πn]

=
∑

{C1, . . . , CD}
∈ P(X1:I1,...,1:IJ )

P[Πn = {C1, . . . , CD}]
D∏

d=1

P0

 ⋂
(j,i):

∑j−1

j′=1
Ij′+i∈Cd

Aj,i



where C1, . . . , CD are the sets in Πn, whose elements are collected according to the order of

arrival by groups. Now, to complete the proof, what is left to show is that when the pEPPF

is obtained from an arbitrary vector of random probability measures according to (6) in the

main paper, then there always exists an mSSP that induces the same pEPPF.

To this aim, let us first consider a pair of dependent random probability measures (not

necessarily mSSP) that admit the following representation

Pj
a.s.
=
∑
h≥1

πj,hδθh +

1−
∑
h≥1

πj,h

P0, for j = 1, 2 (S.15)

where P0 is a non-atomic (deterministic) distribution on a space X, πj = (πj,h)h≥1 is a random

sub-probability sequence, for j = 1, 2, and the sequence of (θh)h≥1, conditionally on π =

(π1,π2), follows any joint distribution such that P[θh = θh′ | π] = 0, for any h ̸= h′. Let define

ωj
a.s.
=
∑

h≥1 πj,h, such that

Pj = ωj P̃j + (1− ωj)P0 for j = 1, 2

where P̃j
a.s.
=
∑
h≥1

πj,h

ωj
δθh=:

∑
h≥1

π̃j,hδθh .

pEPPF
(n)
D (n1,n2) = E

[ ∫
XD
∗

D∏
d=1

P1(dxd)
n1,dP2(dxd)

n2,d

]

= E
{∫

XD
∗

D∏
d=1

2∏
j=1

[
ωj P̃j(dxd) + (1− ωj)P0(dxd)

]nj,d
}

= E
{
E

∫
XD
∗

D∏
d=1

2∏
j=1

[
P̃j(dxd)

zj,d × P0(dxd)
1−zj,d

]nj,d

| ωj

}
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where zj,d | ωj
ind∼ Bernoulli(ωj) and where the product measure of the non-atomic component

P0 equals zero on the diagonal, meaning

∫
X
P0(dxd)

n =

1 if n = 1

0 if n ≥ 2

Thus,

pEPPF
(n)
D (n1,n2) = E

{∫
XD
∗

[ ∏
d∈[D]:n1,d+n2,d≥1

2∏
j=1

P̃j(dxd)
zj,d nj,d P0(dxd)

(1−zj,d)nj,d

×
∏

d∈[D]:n1,d+n2,d=1

2∏
j=1

P̃j(dxd)
zj,d nj,d P0(dxd)

(1−zj,d)nj,d

]}

= E
{∫

XD
∗

[ ∏
d∈[D]:n1,d+n2,d≥1

2∏
j=1

P̃j(dxd)
zj,d nj,d

×
∏

d∈[D]:n1,d=1,n2,d=0

P̃1(dxd)
z1,d P0(dxd)

(1−z1,d)

×
∏

d∈[D]:n1,d=0,n2,d=1

P̃2(dxd)
z2,d P0(dxd)

(1−z2,d)

]}

= E
[ ∑

h1 ̸=... ̸=hD′

J∏
j=1

∏
d∈[D]:n1,d+n2,d≥1

π̃
nj,d zj,d
j,hd


×

 ∑
h1 ̸=... ̸=hD′′

J∏
j=1

∏
d∈[D]:n1,d=1,n2,d=0

π̃
z1,d
1,hd


×

 ∑
h1 ̸=... ̸=hD′′′

J∏
j=1

∏
d∈[D]:n1,d=0,n2,d=1

π̃
z2,d
2,hd

]

Importantly, the expression and derivation above for the pEPPF also hold when (P1, P2) is

an mSSP. Crucially, this expression depends only on the law of the weights of the random

probability measures in (S.15). Since the class of mSSPs imposes no restriction on this law,

one can always choose an mSSP whose pEPPF matches the expression for any prescribed

weight distribution. More precisely, given a pEPPF derived from P1 and P2 in (S.15), the

corresponding mSSP may be constructed by adopting the same weight law of P1 and P2 and

selecting an arbitrary non-atomic base measure.

To extend the argument to arbitrary pairs of probabilities not necessarily satisfying (S.15),

note that they can always be decomposed into an atomic and a non-atomic component. More

precisely, let (G1, G2) be an arbitrary pair of random probability measures. For each j = 1, 2

S.12



we can rewrite

Gj
a.s.
=
∑
h≥1

πj,hδθh +

1−
∑
h≥1

πj,h

G0,j , for j = 1, 2

where G0j is a non-atomic random distribution on a space X, πj = (πj,h)h≥1 is a random sub-

probability sequence, for j = 1, 2, and the sequence of (θh)h≥1, conditionally on π = (π1,π2),

follows any joint distribution such that P[θh = θh′ | π] = 0, for any h ̸= h′. Note that the pair

(G1, G2) induced the same pEPPF if we substitute the random non-atomic distributions G0,1

and G0,2 with a common deterministic arbitrary distribution P0.

Thus, the pEPPF induced by an arbitrary pair of random probabilities (G1, G2) can be

obtained as the pEPPF induced by a pair of random probabilities (P1, P2) satisfying (S.15)

and thus by a pair of mSSP.

Finally, note that extending the above argument to J ≥ 2 is a matter only of notation.

S.2.15 Proof of Proposition 13

Proof. The proof follows by reasoning analogous to the derivation of the pEPPF for generic

measures in the proof of Theorem 12. However, since here we assume the mSSP is proper, its

non-atomic components vanish, and the derivation simplifies to:

pEPPF
(n)
D (n1, . . . ,nJ) = E

[ ∫
XD
∗

D∏
d=1

P1(dxd)
n1,d . . . PJ(dxd)

nJ,d

]

= E
{∫

XD
∗

D∏
d=1

J∏
j=1

[∑
h≥1

πj,hδθh(dxd)

]nj,d
}

= E
[ ∑
h1 ̸=... ̸=hD

J∏
j=1

D∏
d=1

π
nj,d

j,hd

]
.

S.2.16 Proof of Proposition 14

The proof follows trivially from the definition of conditional probability.

S.3 Algorithms and models details for the multi-

armed bandit illustration

The algorithms used for all six strategies considered in Section 6 are Markov chain Monte

Carlo marginal algorithms. These algorithms are obtained using the augmented representation

of the pEPPF described in Section 5 for the additive and hierarchical processes, and the
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sequential sampling schemes detailed in Section S1 for the independent processes. All models

are generalized to accommodate random hyperparameters to achieve greater flexibility in the

learning mechanisms, leading to the following specifications for the six strategies.

• Independent Dirichlet Process

Xj,i | (P1, . . . , PJ)
ind∼ Pj for i = 1, 2, . . .

Pj | αj
ind∼ DP(αj)

αj
iid∼ Gamma(0.75, 1).

where Gamma(a, b) denotes a Gamma distribution with expected value equal to a/b.

• Independent Pitman-Yor Process

Xj,i | (P1, . . . , PJ)
ind∼ Pj for i = 1, 2, . . .

Pj | σj , αj
ind∼ PYP(σj , αj)

σj
iid∼ Beta(1, 3) αj

iid∼ Gamma(0.2, 1).

where Beta denotes a Beta distribution.

• Additive Dirichlet Process

Xj,i | (P1, . . . , PJ)
ind∼ Pj for i = 1, 2, . . .

Pj = ϵj Q0 + (1− ϵj)Qj

ϵj
iid∼ 0.15 δ0 + 0.15 δ1 + 0.7Uniform(0, 1)

Qj | αj
ind∼ DP(αj) for j = 0, 1, . . . , J

α0
iid∼ Gamma(0.5, 2), αj

iid∼ Gamma(6, 2) for j = 1, 2, . . . , J.

• Additive Pitman-Yor Process

Xj,i | (P1, . . . , PJ)
ind∼ Pj for i = 1, 2, . . .

Pj = ϵj Q0 + (1− ϵj)Qj

ϵj
iid∼ 0.1 δ0 + 0.1 δ1 + 0.8Uniform(0, 1)

Qj | σj , αj
ind∼ PYP(σj , αj) for j = 0, 1, . . . , J

σ0
iid∼ Beta(1, 3), σj

iid∼ Beta(1, 2) for j = 1, 2, . . . , J

α0
iid∼ Gamma(0.25, 4), αj

iid∼ Gamma(2, 2) for j = 1, 2, . . . , J.
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• Hierarchical Dirichlet Process

Xj,i | (P1, . . . , PJ)
ind∼ Pj for i = 1, 2, . . .

Pj | Q
iid∼ DP(α,Q),

Q ∼DP(α0, P0)

α0
iid∼ Gamma(1, 1/3), αj

iid∼ Gamma(1, 1/2) for j = 1, 2, . . . , J.

• Hierarchical Pitman-Yor Process

Xj,i | (P1, . . . , PJ)
ind∼ Pj for i = 1, 2, . . .

Pj | Q
iid∼ PYP(σ, α,Q),

Q ∼PYP(σ0, α0, P0)

σ0
iid∼ Beta(1, 2), σj

iid∼ Beta(1, 2) for j = 1, 2, . . . , J

α0
iid∼ Gamma(1, 1), αj

iid∼ Gamma(1, 1) for j = 1, 2, . . . , J.

The choice of the parameters of the hyperpriors on discount and concentration parameters

is performed as follows. We use the values suggested in Battiston et al. (2018) for the Hier-

archical Pitman-Yor Process, and then we fix the ones of the other strategies by considering

the probabilities of ties as a function of the hyperparameters and approximately match their

expected values and variances. This selection procedure ensures a fair performance compari-

son, as the probabilities of ties provide an excellent summary of dependence for rmSSPs. The

resulting expected probability of ties and corresponding variances are reported in Table S.1.

Model E[prob tie across] V[prob tie across] E[prob tie within] V[prob tie within]

Independent DP 0 0 0.672 0.049

Independent PYP 0 0 0.669 0.047

+DP 0.388 0.092 0.666 0.052

+PY 0.400 0.064 0.628 0.038

HDP 0.389 0.056 0.671 0.041

HPY 0.397 0.043 0.638 0.033

Table S.1: Expected probabilities of ties within and across as functions of the hyperparameters

and corresponding variances. Values are obtained via Monte Carlo approximation by simulating

2000 samples of the hyperparameters from the hyperpriors of each model.

To sample the concentration parameters of the Dirichlet processes, we employed a Gibbs

Sampler via an augmented representation of the full-conditional of the concentration parame-

ter, avoiding a Metropolis within the Gibbs step. For the hyperparameters of the Pitman-Yor

processes, we devised an adaptive Metropolis-Hasting, obtained via 10 repeated steps within
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the main Gibbs algorithm. At each of the 30 sequential sampling steps of the multi-armed

bandit problem, we perform 200 iterations of the MCMC algorithm, leading to a total of

6000 iterations (not including the Metropolis-Hasting steps, when present) per strategy. After

observing a new data point in a sequential step, we initialize the MCMC for the next step

with a warm start based on the last iteration of the MCMC output in the previous step. For

instance, we initialize the values of the hyperparameters with the last sampled value in the

previous MCMC chain that targets their posterior distribution without conditioning on the

new data point.

Moreover, for hierarchical processes, we perform 1000 iterations of the MCMC before

estimating the probability of discovery at the first sequential sampling step to achieve a

warm start also at the first sampling step. Code for all six strategies is freely available at

https://github.com/GiovanniRebaudo/MSSP.
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