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Abstract

The main topics of the thesis are dependent processes and their uses in Bayesian nonpara-
metric statistics. With the term dependent processes, we refer to two or more infinite dimen-
sional random objects, i.e., random probability measures, completely random measures,
and random partitions, whose joint probability law does not factorize and, thus, encodes
non-trivial dependence. We investigate properties and limits of existing nonparametric
dependent priors and propose new dependent processes that fill gaps in the existing litera-
ture. To do so, we first define a class of priors, namely multivariate species sampling processes,
which encompasses many dependent processes used in Bayesian nonparametrics. We de-
rive a series of theoretical results for the priors within this class, keeping as main focus the
dependence induced between observations as well as between random probability mea-
sures. Then, in light of our theoretical findings, as well as considering specific motivating
applications, we develop novel prior processes outside this class, enlarging the types of
data structures and prior information that can be handled by the Bayesian nonparametric
approach. We propose three new classes of dependent processes: full-range borrowing of in-
formation priors, invariant dependent priors (with a focus on symmetric hierarchical Dirichlet
processes), and dependent priors for panel count data. Full-range borrowing of information
priors are dependent random probability measures that may induce either positive or neg-
ative correlation across observations and, thus, they achieve high flexibility in the type of
induced dependence. Moreover, they introduce an innovative idea of borrowing of infor-
mation across samples which differs from classical shrinkage. Invariant dependent priors
are instead dependent random probabilities that almost surely satisfy a specified invari-
ance condition, e.g., symmetry. They may be employed both when a priori knowledge
on the shape of the unknown distribution is available or, as we do, to flexibly model er-
rors terms in complex models without losing identifiability of other parameters of interest.
Finally, dependent priors for panel count data are flexible priors based on completely ran-
dom measures, that take into account dependence between the observed counts and the
frequency of observation in panel count data studies. We study a priori and a posteriori
properties of all the proposed models, develop algorithms to derive inference, compare
the performances of our proposals with existing methods, and apply these constructions
to simulated and real datasets. Through all the thesis, we try to balance theoretical and
methodological results with real-world applications.
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Introduction

The past three decades have seen an increased availability of high-dimensional and com-
plex structured datasets in many fields and applications such as genetics, ecology, and
natural language processing, to name just a few. Such amount of information has required
new statistical models and methodologies. Flexibility, interpretability, reasonable compu-
tational time, and quantifiable uncertainty are among the most important features for a
statistical model nowadays. Bayesian nonparametric statistics provides a solid, coherent,
and principled framework that nicely fits this new scenario as it avoids strong assumptions
on data generative processes as well as the black-box approach of algorithmic modeling.
Bayesian nonparametric statistics dates its roots back to 1937, when de Finetti derived the
theorem that bears his name (de Finetti, 1937) and that contains the theoretical foundations
of the Bayesian nonparametric approach. However, only more recently, it developed into
the outright and flourishing field that it is today. In 1972, D. V. Lindley was writing “Non-
parametric statistics. This is a subject about which the Bayesian method is embarrassingly silent”,
(Lindley, 1972, p. 66). Nonetheless, just a year after, T. S. Ferguson published his work
on the Dirichlet process (Ferguson, 1973), thanks to which nonparametric techniques have
become an appreciable and effective approach within the Bayesian framework.
Standard parametric and nonparametric Bayesian models typically assume exchangeabil-
ity of the observables, which is a homogeneity condition implying the existence of a ran-
dom probability measure, conditionally on which data can be seen as independent and
identically distributed (de Finetti, 1937). The literature on nonparametric priors in this set-
ting is well-established. They consist in the law of a single random probability measure,
which most often can be obtained as a transformed completely random measure (Kingman,
1967).
However, real data usually present a level of heterogeneity that makes exchangeability an
unrealistic assumption and Bayesian models require many dependent random probabili-
ties to be constructed. In this framework, the study of dependence between random prob-
abilities and observations is a very interesting topic. It provides intuitions on how existing
models behave and how to best construct tailored priors to model real data. Recently there
has been a growing literature devoted to nonparametric models for non-exchangeable data
(see, for reviews, Foti & Williamson, 2015; Müller et al., 2015; Quintana et al., 2020) and this
thesis aims at bringing further advances to this research area.
The thesis is organized in six almost self-contained chapters and three appendixes. Chap-

xv



ter 1 contains a review of the literature that is most relevant to the novel works presented
in subsequent chapters. We introduce formally the concept of exchangeability and present
some nonparametric models satisfying this assumption, with a focus on models based on
the Dirichlet process and on completely random measures. We introduce then the notion
of partial exchangeability, which is a natural generalization of exchangeability suited to deal
with data that are grouped into distinct samples. Partial exchangeability would be the main
assumption from Chapter 2 to Chapter 4. We provide also a brief review of the literature
of Bayesian nonparametric models for partial exchangeable data.

Chapter 2 is devoted to the introduction and derivation of theoretical results of what we
call multivariate species sampling models. They are a wide class of dependent nonparametric
processes that can be used to model partially exchangeable data. They are a very natural
generalization of the species sampling models introduced by Pitman (1996) to a multivari-
ate setting. It appears that the vast majority of the almost-sure discrete prior currently
used to model partially exchangeable data belong to this class. Therefore, we believe that
the original results in this chapter are of great interest, because they constitute a nice and
formal framework to understand ‘where we are’ and ‘what can be done further’ in the research
field of nonparametric models for partially exchangeable data. Moreover, as explained in
the chapter, many of the results and ideas underlying multivariate species sampling pro-
cesses can be generalized even beyond partial exchangeability. One of the findings of the
second chapter is that multivariate species sampling models imply a non-negative correla-
tion between observations in different samples. However such property, which is strictly
connected to the idea borrowing of information across populations, is neither implied by par-
tial exchangeability nor always appropriate in some applications.

In Chapter 3, we extend the study of dependence to a wider class of nonparametric models
also outside the class of multivariate species sampling processes, introducing the notion of
hyper-ties. We show how hyper-ties play a crucial role in driving the correlation between
observations in different samples and thus borrowing of information. We note that existing
nonparametric priors either do not allow an explicit evaluation of the value of the correla-
tion or, when they do, they are able to induce only non-negative correlation. Thus in this
chapter we propose a novel class of dependent nonparametric priors, which may induce
either positive or negative correlation across samples based on the value of a hyperparme-
ter. Our proposal not only fills a gap in the literature of partially exchangeable models, but
also introduces a new and more flexible idea of borrowing of information. Moreover, many
of the models in the literature can be obtained as specific cases of the one proposed in this
chapter. We investigate prior and posterior theoretical properties of the model and develop
algorithms to perform posterior inference. The merits of our proposal are further discussed
through illustrative examples on simulated and real data, where our model outperforms
competing ones.

Chapter 4 focus on dependent nonparametric priors that satisfy invariance conditions, the
most obvious example being symmetry. In order to impose such conditions, we need to

xvi



develop a new prior that again lies outside the class of multivariate species sampling pro-
cesses. The processes introduced in this chapter are useful both when prior information
about the observable is avalaible or when the nonparametric construction is used to model
latent error terms. Even though the proposed priors can be employed for different inferen-
tial goals, here they are used as main building block in a broader model. This chapter has
a more applied flavor with respect to the previous ones. The main motivating application
is the development of a flexible and interpretable model selection procedure to study the
relationship between cardiac dysfunctions and hypertensive disorder of pregnancy. Hy-
pertensive disorders of pregnancy are diseases that occur in about 10% of pregnant women
around the world. Though there is evidence that hypertension impacts maternal cardiac
functions, the relation between hypertension and cardiac dysfunctions is only partially un-
derstood. The study of this relationship can be framed as a joint inferential problem on
multiple populations, each corresponding to a different hypertensive disorder diagnosis,
that combines multivariate information provided by a collection of cardiac function in-
dexes. A Bayesian nonparametric approach seems particularly suited for this setup and
we demonstrate it on a dataset consisting of transthoracic echocardiography results of a
cohort of Indian pregnant women. We are able to perform model selection, provide den-
sity estimates of cardiac function indexes and a latent clustering of patients: these readily
interpretable inferential outputs allow to single out modified cardiac functions in hyper-
tensive patients compared to healthy subjects and progressively increased alterations with
the severity of the disorder. The analysis relies on a novel hierarchical structure, called
symmetric hierarchical Dirichlet process, which is a specific example of invariant depen-
dent process. This is suitably designed so that the mean parameters are identified and used
for model selection across populations, a penalization for multiplicity is enforced, and the
presence of unobserved relevant factors is investigated through a latent clustering of sub-
jects. Posterior inference relies on a suitable Markov chain Monte Carlo algorithm and the
model behaviour is also showcased on simulated data.
Chapter 5 deals with dependent processes for panel count data, where for each subject
cumulative counts are recorded at discrete time points. Both the time points and the cu-
mulative counts are realizations of point processes, namely the observation process and the
event process. Anytime prior information about dependence between counts and observa-
tion times is available, independence assumptions should clearly be avoided. Here we
use completely random measures to define nonparametric priors that may reflect positive
associations between the event and the observational processes underlying the observa-
tions. Chapter 5 interestingly shows how dependent processes may be employed even on
non-partially exchangeable data.
The thesis concludes with Chapter 6 which contains related ideas and further extensions
of the works in previous chapters.

xvii
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Chapter 1

A Guided Tour on the Basics of
Bayesian Nonparametrics

This first introductory chapter contains a literature review of those topics that are most
relevant for the following chapters. The chapter is structured in four main sections. In
Section 1.1 we introduce the concept of exchangeability, which is the usual starting as-
sumption of classical Bayesian models. Section 1.2 contains a review of the Dirichlet pro-
cess and the Dirichlet process mixture model, which is undoubtedly the most famous and
used Bayesian nonparametric model. Moreover, in Section 1.2, it can be found a review
of the invariant Dirichlet process, which is not only a prior closely related to the Dirichlet
process but is also specifically relevant for the contribution in Chapter 4, where this pro-
cess is extended to model non-exchangeable data. Section 1.3 is devoted to the description
of completely random measures and their uses in Bayesian nonparametric models for ex-
changeable data. Completely random measures and their multivariate extension will be of
particular interest for the reader of this thesis in light both of Chapter 3 and Chapter 5. Fi-
nally, section 1.4 introduces the concept of partial exchangeability, which is a natural exten-
sion of exchangeability for data grouped into distinct but related samples and that would
be a main reference framework for all the chapters in this thesis, except for Chapter 5. In
this section, we also review what we consider the most significant Bayesian nonparamet-
ric models for partial exchangeability. All these models are particular cases of the novel
general class of processes that will be introduce in Chapter 2.

1.1 Exchangeability and prior processes

Consider a probability space (Ω,F,P) and a Polish space X equipped with the correspond-
ing Borel σ-algebra X. Denote with (Xn)n≥1 a sequence of observable random variables
each taking values in (X,X), such that observed data (x1, . . . , xn) are a realization of
(X1, . . . , Xn). A classical assumption of Bayesian models is that the sequence (Xn)n≥1 is
exchangeable.

1



CHAPTER 1. A GUIDED TOUR ON THE BASICS OF BAYESIAN NONPARAMETRICS

Definition 1.1 (Exchangeability). A sequence of random variables (Xn)n≥1 such that, for any
n ≥ 2, the law of (X1, . . . , Xn) is invariant with respect to permutations of its elements, i.e.

(X1, . . . , Xn)
d
= (Xσ(1), . . . , Xσ(n))

for any σ permutation of [n] = {1, 2, . . . , n}, is said exchangeable.

From a modeling point of view, assuming exchangeability of the observables means that
the order of the data is not informative and, therefore, it should not affect inference results.
This is a typical situation in many cross-sectional studies, when a sample is drawn from
a single population at a specific point in time. Firstly, notice that it follows directly from
Definition 1.1 that random variables in an exchangeable sequence are marginally identi-
cally distributed. Moreover, thanks to B. de Finetti and his representation theorem, we also
know that exchangeable random variables can be represented as conditionally indepen-
dent and identically distributed. More formally, denote with PX the space of all probability
measures on X, which, if endowed with the distance of weak convergence, is a Polish space
with respect to the Borel σ-algebra B(PX).

Theorem 1.1 (de Finetti, 1937). A sequence of random variables (Xn)n≥1 is exchangeable if and
only if there exists a probability measure Q on PX such that, for any n ≥ 1 and A1, A2, . . . , An,
with Ai ∈X for i = 1, . . . , n,

P[X1 ∈ A1, . . . , Xn ∈ An] =

∫
PX

n∏
i=1

p(Ai)Q(dp).

where Q is said de Finetti measure.

The theorem can be equivalently restated as

Xi | p̃
iid∼ p̃ for i = 1, . . . , n

p̃ ∼ Q
(1.1)

where p̃ is a measurable function from (Ω,F,P) into (PX,B(PX)), i.e., a random probability
measure. Therefore, any exchangeable sequence of data can be represented through two
elements: p̃, which is the conditional law of the data, and a prior distribution Q, which can
be seen as a probability law reflecting information and uncertainty about p̃. Notice that p̃
can be interpreted as a stochastic process taking values in [0, 1] with index set given by X

and whose law is define by the prior Q; for this reason we refer to the random measure p̃
also with the term process. Consider also that to transform (1.1) into a working model for
analyzing data, it is enough to choose the law Q appropriately and for this reason, when a
specific prior Q is specified we refer to (1.1) with the term model.
In parametric models, the prior Q is chosen to be degenerate on a finite-dimensional sub-

2



1.2. DIRICHLET PROCESS MODELS

space of PX. For example, the normal-normal model

Xi | θ
iid∼ N (θ, 1) for i = 1, . . . , n

θ ∼ N (0, 1)

coincides with a prior Q such that Q({p̃ 6= N (θ, 1) , θ ∈ R}) = 0. Even though choices of
this type simplify the inferential procedure, they also usually coincide with a overly infor-
mative prior that rarely can be justified in real applications. Conversely, in nonparametric
problems Q has an infinite-dimensional support. Enlarging the prior support, nonpara-
metric models permit to relax unrealistic parametric assumption in favor of more flexible
constructions. However, this usually comes with a cost in terms of model complexity, dif-
ficulties in the interpretation of results and heavier computational burden. These are some
of the reasons why further investigation on Bayesian nonparametric models is still needed
nowadays.

1.2 Dirichlet process models

The Dirichlet process (DP) was introduced by Ferguson (1973) and it is the most celebrated
Bayesian nonparametric prior. To describe the value of the DP, S. Ghosal and A. Van der
Vaart wrote “the importance of the Dirichlet process in Bayesian nonparametrics is comparable
to that of the normal distribution in probability and general statistics”, (Ghosal & Van der Vaart,
2017, p. 96). The DP laid the foundations for many Bayesian nonparametric models, the
vast majority of which can be interpreted as extensions of the DP itself.

1.2.1 Dirichlet process

The Dirichlet process admits many equivalent definitions, however the first provided by
T.S. Ferguson is the one that makes use of the Dirichlet distribution and that gives the name
to the process. Thus, we firstly recall the definition of Dirichlet distribution.

Definition 1.2 (Dirichlet distribution). Consider the (k-1)-dimensional probability simplex ∆k−1 =

{(p1, . . . , pk) : pi ≥ 0 and
∑k

i=1 pi = 1}, for some k ∈ N \ {1}. A probability distribution on
∆k−1 is Dirichlet with parameter (α1, . . . , αk), if the corresponding density f (with respect to the
Lebesgue measure on Rk−1) is

fk(p1, . . . , pk) =


Γ(

∑k
i=1 αi)∏k

i=1 Γ(αi)
pα1

1 . . . p
αk−1

k−1

(
1−

k−1∑
i=1

pi

)αk
for (p1, . . . , pk) ∈ ∆k−1

0 otherwise

where Γ is the Gamma function.
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We use the notation (p1, . . . , pk) ∼ Dk−1(α1, . . . , αk) to indicate that (p1, . . . , pk) is dis-
tributed according to a Dirichlet distribution. More details on the Dirichlet distribution
can be found in Appendix A, along with a brief review of the two most typical uses of the
Dirichlet distribution in Bayesian statistics, namely the Multinomial-Dirichlet model and
finite mixture models.

Definition 1.3 (Dirichlet Process). Consider a non-null measure α on (X, X) with θ := α(X) ∈
R+. p̃ is a Dirichlet process (DP) on (X, X) with parameter α if p̃(X) = 1 a.s. and for any
k ∈ N \ {1} and measurable partition (A1, . . . , Ak) of X

(p̃(A1), . . . , p̃(Ak)) ∼ Dk−1(α(A1), . . . , α(Ak))

where θ is called concentration parameter (or total mass) and the probability measure P0(·) =
α(·)/α(X) is called baseline probability measure.

We use the notation p̃ ∼ DP( θ, P0 ) to indicate that the random measure p̃ is distributed
accordingly to a DP with concentration parameter θ and baseline P0. We refer to Ferguson
(1973) for proof of existence of the process. From Definition 1.3, it is immediate to compute
the marginal moments of a DP, in particular, if p̃ ∼ DP( θ, P0 ), then for any A ∈X

E[ p̃(A) ] = P0(A)

Var[ p̃(A) ] =
P0(A)(1− P0(A))

1 + θ

Therefore the baseline P0 is the mean measure of the DP, while the concentration parameter
controls the variability, so that the higher θ, the lower the variability. By Theorem 1.1 by de
Finetti we also have that, if

Xi | p̃ ∼ p̃ for i = 1, . . . , n

p̃ ∼ DP( θ, P0 )
(1.2)

then P[Xi ∈ A] = E[ p̃(A) ]. Thus, when the DP is used as a prior in an exchangeable
model, P0 is the marginal law of one observation. The two most important features of the
Dirichlet process are its full weak support and conjugacy, the former ensures flexibility,
while the latter guarantee tractability of DP–based models. They are formally stated in the
next two theorems.

Theorem 1.2 (Ferguson, 1973). Given the model in equation (1.2), it follows that

p̃ | X1, . . . , Xn ∼ DP
(
θ + n,

θ

θ + n
P0 +

n

θ + n
Pn

)
where Pn is the empirical distribution of X1, . . . , Xn, i.e. Pn = n−1

∑n
i=1 δXi , where δx denotes

the Dirac measure giving mass 1 to the point x.

4
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Theorem 1.3 (Majumdar, 1992). Consider the weak support of Q = DP (θ, P0), i.e. SQ =⋂
A∈A A with A = {A ∈ B(PX) : A is closed, Q(Ac) = 0}, then

SQ = {p ∈ PX : Sp ⊂ SP0}

where Sp and SP0 denote the support of p and P0 with respect to X.

Theorem 1.3 was first proved by Ferguson (1973) for X = R and then generalized to Polish
spaces by Majumdar (1992).
The joint distribution of a random sample drawn from a DP can be described through the
generalized Pólya urn scheme of Blackwell and MacQueen provided here below.

Theorem 1.4 (Blackwell & MacQueen, 1973). Let Xi | p̃
iid∼ p̃, with p̃ ∼ DP (θ, P0), then

X1 ∼ P0

Xi+1 | X1, . . . , Xi ∼
θ

θ + i
P0 +

1

θ + i

i∑
j=1

δXj

It is evident from the previous theorem that the DP induces ties with positive probability
between the random variables in the sequenceX = (Xn)n≥1, i.e. P[Xi = Xj ] > 0.
The generalized Pólya urn scheme for the DP provides an easy procedure to sample a
sequence of exchangeable random variablesX = (Xn)n≥1 whose de Finetti measure is the
law of a DP. However, in many cases one may be interested in sampling the process itself.
To do so there are different possible constructive representations, we report the probably
most celebrated one, i.e. the stick breaking representation, in the next theorem. It is due to
Sethuraman & Tiwari (1982) and Sethuraman (1994).

Theorem 1.5 (Sethuraman, 1994). If p̃ ∼ DP (θ, P0), then

p̃
a.s.
=

+∞∑
h=1

πh δφh

with πh = π′h

h−1∏
r=1

(1− π′r) π′r
iid∼ Beta(1, θ) φh

iid∼ P0.

Notice that the almost sure discreteness of the DP induces a random partition Πn = {A1, . . . ,

Ak} over the set {X1, . . . , Xn} so that Xi and Xj are both in Al if and only if Xi = Xj .

Theorem 1.6 (Antoniak, 1974). Let Xi | p̃
iid∼ p̃, with p̃ ∼ DP (θ, P0), then the probability of

observing a specific partition {A1, . . . , Ak} of the elements in {X1, . . . , Xn} consisting of k ≤ n

distinct values with respective frequencies n1, . . . , nk coincides with

P(Πn = {A1, . . . , Ak}) =
θk

(θ)n

k∏
i=1

(ni − 1)!

5



CHAPTER 1. A GUIDED TOUR ON THE BASICS OF BAYESIAN NONPARAMETRICS

where (θ)n = Γ(θ + n)/Γ(θ).

More details on random partitions can be found in Chapter 2.

1.2.2 Dirichlet process mixture model

The almost sure discreteness of the DP makes it inappropriate as prior over densities.
However, such limitation can be overcome through the so-called Dirichlet process mix-
ture (DPM) model introduced by Ferguson (1983) and Lo (1984). According to a DPM
model, the common density f(x) generating the data is obtained as an infinite mixture
with a Dirichlet process as mixing distribution.
To formally describe the model, we need to introduce the notion of probability kernel.
Let (Θ, σ(Θ)) be a finite-dimensional parameter space endowed with the corresponding
σ-algebra and k be a mapping from X × Θ into [0, 1], such that, for every fixed θ ∈ Θ, the
map x 7→ k(x; θ) is a probability density function (p.d.f.) with respect to a given σ-finite
measure v, and, for every fixed x ∈ X, the map θ 7→ k(x; θ) is measurable.

Definition 1.4 (Dirichlet process mixture 1). A sequence of random variables (Xi)
n
i=1 follows a

Dirichlet process mixture (DPM) model if

Xi | p̃
iid∼ f(x) =

∫
Θ
k(x; θ)p̃(dθ) for i = 1, . . . , n

p̃ ∼ DP(α, P0 )

Introducing a sequence of latent parameters (θi)
n
i=1, the model can be conveniently rewrit-

ten as

Xi | θi
ind∼ k(x; θi) θi | p̃

iid∼ p̃ for i = 1, . . . , n

p̃ ∼ DP(α, P0 )

DPM models are mainly used to estimate the density f(x) or, even more often, for cluster-
ing observations. As for the former, it is important to notice that conjugacy does not hold
anymore and the posterior distribution of f(x) is not available in closed form. However,
conditioning on the sequence of latent parameters and by the conjugacy of the DP (see
Theorem 1.2) one has

p̃ | X1, . . . , Xn, θ1, . . . , θn ∼ DP

(
α+ n,

α

α+ n
P0 +

1

α+ n

n∑
i=1

δθi

)
(1.3)

Since f(x) is a deterministic linear transformation of p̃, its posterior estimate under a square
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loss function (conditioning on the latent parameters) is

E [f(x) | X1, . . . , Xn, θ1, . . . , θn] =
α

α+ n

∫
k(x; θ)P0(dθ) +

1

α+ n

n∑
i=1

k(x; θi)

Thanks to these results, posterior inference can be rather easily conducted through the
Gibbs-sampling algorithms provided in Escobar (1994) and Escobar & West (1995) and
refined in Neal (2000). An interesting result, that comes from (1.3), is obtained if one
marginalizes out the latent parameters to get the posterior.

p̃ | X1, . . . , Xn ∼
∫
DP

(
α+ n,

α

α+ n
P0 +

1

α+ n

n∑
i=1

δθi

)
dp ((θi)

n
i=1 | (Xi)

n
i=1)

where p ((θi)
n
i=1 | (Xi)

n
i=1) is the posterior distribution of the latent parameters. The pos-

terior distribution of the mixing measure p̃ turns out to be a mixture of DPs, which is a
construction studied by Antoniak (1974).

As anticipated, DPM models are often used to perform model–based clustering. To clarify
this point, notice that the prior p̃ gives positive probability to ties among the latent param-
eters, i.e. P[θi = θj ] > 0, and thus induces a random partition Πn, that has been described
at the end of Section 1.2.1. Using the partition on the latent parameters, we can define a
natural clustering rule among observations and cluster together Xi and Xj if and only if
θi = θj . Moreover, we denote with θ∗1, . . . , θ

∗
k the distinct values (in order of appearance)

in (θ1, . . . , θn), where k ≤ n. For notation and computational convenience a set of cluster
membership indicators is usually introduced, namely c1, c2, . . . , cn, with ci ∈ [k], so that
ci = cj if and only if θi = θj and ci = c if and only if θi = θ∗c . In light of this, a DPM model
can be equivalently restated as follows.

Definition 1.5 (Dirichlet process mixture 2). A sequence of random variables (Xi)
n
i=1 follows a

Dirichlet process mixture (DPM) model if

Xi | ci, θ∗1, . . . , θ∗k
ind∼ k(x; θ∗ci) for i = 1, . . . , n

(c1, . . . , cn) ∼ Qα

θ∗c
iid∼ P0 for c = 1, . . . , k

where Qα denotes the distribution of the cluster membership indicators associated to the partition
induced by a Dirichlet process with concentration parameter α.

Denoting with ki the number of unique values in {θ1, . . . , θi} and defining n
(i)
j = #{θl :

θl = θ∗j and l ∈ {1, . . . , i}}, for j ∈ [ki], it is immediate to show that Qα coincides with

c1 ∼ δ1

7
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ci | c1, . . . , ci−1 ∼
ki∑
j=1

n
(i)
j

α+ i
δj +

α

α+ i
δki+1

From an interpretation point of view, two observations are clustered together if they come
from the same parametric mixture component, this is the reason why DPM models are
ascribed to model-based clustering techniques.

1.2.3 Invariant Dirichlet process

The invariant Dirichlet process (IDP) was introduce by Dalal (1979a). It will serve as
building block for the original model presented in Chapter 4. After recalling the defi-
nition, we present two representations of the process: the former is the analogue of the
stick-breaking representation, while the latter is an extension of the generalized Pólya urn
scheme of Blackwell & MacQueen (1973). We will then conclude the section with a con-
structive definition for the symmetric-IDP and define the symmetric Dirichlet process mix-
ture (symmetric-DPM). The symmetric-DPM will be the analogue of the Dirichlet process
mixture of Lo (1984) for symmetric distributions.
Let (E, E ) be any p-dimensional measurable Euclidean space. Let G = {g1, . . . , gL} be a
finite group of measurable transformations on (E, E ).

Definition 1.6 (Invariant Probability). A probability measure P0 on (E, E ) is a G-invariant
probability distribution, if P0(A) = P0(gl(A)), ∀A ∈ E and ∀l = 1, . . . , L.

Definition 1.7 (Invariant Random Probability). A random probability p̃ on (E, E ) is said G-
invariant, if it is almost surely G-invariant.

Definition 1.8 (Invariant Partition). A measurable partitionA1, A2, . . . , AK ofE is G-invariant
partition, if Ak = gl(Ak), ∀k = 1, . . . ,K and ∀l = 1, . . . , L.

Definition 1.9 (Invariant Dirichlet Process). A random probability p̃ is an invariant Dirichlet
process with group of transformations G, if

1. p̃ is almost surely G-invariant

p̃(A) = p̃(gl(A)) for l = 1, . . . , L a.s.

2. there exists a G-invariant probability distribution P0 on (E, E ) and α ∈ R+, such for any
k ∈ N and any G-invariant measurable partition A1, . . . , Ak of E(

p̃(A1), . . . , p̃(Ak)
)
∼ Dk−1(αP0(A1), . . . , α P0(Ak))

where α is called concentration parameter and P0 is called baseline probability measure.

8



1.3. COMPLETELY RANDOM MEASURES AND THEIR USES IN BNP

We use the notation p̃ ∼ IDP(α, P0, G) to indicate that the random measure p̃ is distributed
according to a IDP. Notice that if p̃ ∼ DP(α, P0), then p̃ is not an IDP, since it is not an
invariant random probability. And, vice versa, if p̃ ∼ IDP(α, P0, G), then p̃ is not a DP,
since in general its finite dimensional distributions over non G-invariant partitions do not
follow a Dirichlet distribution. However there exists a strong connection between the two
processes, which is provided by Dalal (1979a) with the following theorem.

Theorem 1.7 (Dalal, 1979a). Let q̃ ∼ DP(α, P0) and p̃ ∼ IDP(α, P0, G). Define

q∗(·) =
1

L

L∑
l=1

q̃(gl(· · · ))

then
p̃
d
= q∗.

Tiwari (1988) provided also a constructive definition for the IDP, which is the analogue of
the stick-breaking representation of Sethuraman (1994) for the DP.

Proposition 1.1 (Tiwari, 1988). If p̃ ∼ IDP(α, P0, G), then

p̃ =

∞∑
h=1

πh

L∑
l

δgl(φh)

with πh =
π′h
L

h−1∏
r=1

(1− π′r) π′r ∼ Beta(1, α) φh
iid∼ P0.

While given that

φi | p̃
iid∼ p̃ p̃ ∼ IDP (α, P0, G)

integrating out p̃, we get the correspondent generalized Pólya urn representation for the
process, which is

φ1 ∼ P0

φi | φ1, . . . φi−1 ∼
i−1∑
j=1

1

i− 1 + α

(
1

L

L∑
l=1

δgl(φj)

)
+

α

i− 1 + α
P0

For more details about IDPs we refer to Dalal (1979a), Dalal (1979b), Hannum & Hollander
(1983), Doss (1984), Diaconis & Freedman (1986), Tiwari (1988), Ferguson et al. (1992) and
Ghosal et al. (1999).

1.3 Completely random measures and their uses in BNP

Given a probability space (Ω,F,P) and a Polish space (X,X), a random element µ̃ is a
random measure, if µ̃ is a function µ̃ : Ω× X→ [0,+∞] such that

9
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1. µ̃(ω, ·) is a measure on (X,X), for every ω ∈ Ω

2. µ̃(·, A) is a positive random variable, for every A ∈X.

In the following, we are dropping ω and denoting the random measure as µ̃ and the corre-
sponding random variables on measurable sets as µ̃(A).
When random measures are used in statistical models, the space X is usually the space
where observations (or latent parameters of the model) take values. We restrict our atten-
tion to the cases in which µ̃ is almost surely boundedly finite, i.e. for any bounded A ∈X,
we have µ̃(A) < ∞ with probability one. We denote with MX the space of boundedly fi-
nite measures on X and with MX, the topology of weak# converge (cf. Daley & Vere-Jones,
2003, pp.402–406).

Definition 1.10 (Completely random measure - CRM). Consider the Polish space (X,X) and
the space (MX,MX) of boundedly finite measures on (X,X). Given a probability space (Ω,F,P), a
random element µ̃ from (Ω,F,P) into (MX,MX) is a completely random measure (CRM) if, for ev-
ery collection of pairwise disjoint sets (Ai)

n
i≥1 in X, the random variables µ̃(A1), µ̃(A2), . . . , µ̃(An)

are mutually independent.

In words, a CRM is a boundedly finite random measure that, when evaluated on disjoint
measurable sets, gives rise to mutually independent random variables. CRMs were first
introduced in Kingman (1967) on spaces X more general than Polish spaces. The only
assumption made by Kingman on (X,X) is that singletons are measurables (i.e. {x} ∈ X,
for all x ∈ X).
The probably most important property of CRMs is their almost surely discreteness, which
is stated in the following theorem.

Theorem 1.8 (Kingman, 1967). If µ̃ is a CRM on (X,X), then

µ
a.s.
= µf +

M∑
i=1

WiδTi +
∞∑
j=1

JjδXj

where µf is a purely deterministic measure, M ∈ {0, . . . ,∞}; T1, . . . , TM are fixed; (Jj)j≥1,
(Xj)j≥1 and (Wi)i≥1 are sequences of independent random variables such that (Jj , Xj)j≥1 is inde-
pendent from (Wi)i≥1.

In what follows, if not differently specified, we are going to assume µf = 0 and M = 0,
so that the CRM has no deterministic component and no fixed jumps. Such CRMs are
characterized by the following Laplace functional transform for any measurable function
f : X→ R+

E
[
e
−

∫
X
f(x)µ̃(dx)

]
= exp

−
∫

R+×X

[1− e−sf(x)]v(ds, dy)

 (1.4)

10



1.3. COMPLETELY RANDOM MEASURES AND THEIR USES IN BNP

where v is a measure on R+ × X, called Lévy intensity, that satisfies∫
R+×B

min{1, s} v(ds, dx) <∞, for any B ∈X.

Theorem 1.9. Any CRM µ̃ (with µf = 0 and M = 0) can be represented as a linear functional of
a Poisson random measure (PRM) N , i.e.

µ̃(dx) =

∫ +∞

0
sN(ds, dx)

where N is a PRM on R+ × X with mean measure equal to the Lévy intensity of µ̃.

Lastly, in Chapter 3 and 5, we will also assume that CRMs are homogeneous which means
that jumps (Jj)j≥1 and locations (Xj)j≥1 are independent. In terms of Lévy intensity it
reads

v(ds, dx) = ρ(ds)α(dx)

where ρ is a measure on R+, named Lévy density, and α is a non-atomic measure on X,
usually called the centring measure. Typical examples of CRMs are given by the gamma
process,

v(ds, dx) = s−1e−sds α(dx), s > 0,

the homogeneous beta process,

v(ds, dx) = θs−1(1− s)θ−1ds α(dx), 0 < s < 1, θ > 0,

the σ-stable process,

v(ds, dx) =
σ

Γ(1− σ)
s−1−σds α(dx), s > 0, 0 < σ < 1,

and the superposed gamma process,

v(ds, dx) =
1− e−γ s

1− e−s
s−1e−sds α(dx), s > 0, γ > 0.

For more details on CRMs, we refer to Kingman (1967) and Kingman (1993).

1.3.1 Normalized random measures with independent increments

CRMs are often normalized to obtain random probability measures, called normalized ran-
dom measures with independent increments, introduced in Regazzini et al. (2003). Clearly,
one needs P(0 < µ(X) <∞) = 1 for the normalization to make sense, that in terms of Lévy
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Figure 1.1: Simulation steps for a homogeneous NRMI with intensity v(ds, dx) =
ρ(ds)P0(dx). At step 1 arrival times of a Poisson process (PP) on R+ with intensity ρ(ds)
are sampled, at step 2 they are normalized to sum up to 1, at step 3 a atom from P0(dx) is
sampled for each jump, at step 4 the i.i.d. atoms are associated to the jumps.

intensity translates to v(R+, X) =∞ and

ψ(λ) :=

∫
R+×X

[1− e−λs]v(ds, dx) <∞ for any λ > 0,

where ψ(λ) is called Laplace exponent. This explains the following definition.

Definition 1.11 (Normalized random measure with independent increments - NRMI). Let
µ̃ be a CRM on X with intensity v, such that v(R+, X) =∞ and ψ(λ) is finite for any positive λ.
Then the random probability measure

p̃(·) =
µ̃(·)
µ̃(X)

is termed normalized random measure with independent increments (NRMI).

Notice that the definition above could be extended to any random measure µ̃ such that
P(0 < µ(X) < ∞) = 1. However, the strength of CRMs lies in the representation in (1.4),
that allows an unprecedented analytical tractability. Moreover, the class is fairly large and
encompasses many interesting priors: for instance the well-known Dirichlet process is a
normalized Gamma process. Figure 1.1 summarizes the steps to sample a NRMI start-
ing from the correspondent intensity. NRMIs have been extensively studied to model ex-
changeable data (see, for instance, James et al., 2006, 2009, 2010; Lijoi & Prünster, 2010;
Barrios et al., 2013; Nieto-Barajas et al., 2004; Favaro et al., 2016; Camerlenghi et al., 2018).
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1.3.2 Hazard mixture model

CRMs have been effectively employed to model hazard functions, which are of particu-
lar interest in time-to-event analysis. The law of a random variable X , taking values in
(R,B(R)) is typically described through the corresponding cumulative distribution func-
tion (c.d.f.), or, when its distribution is absolutely continuous with respect to the Lebesgue
measure, through the corresponding p.d.f. f(x). However, another equivalent instrument
to describe the law of a real valued random variable is the hazard function h(x), defined as

h(x) = lim
h→0+

P(x ≤ X ≤ x+ h | X ≥ x)

h

The hazard function be can interpreted as a conditional density and its linked to the p.d.f.
through the following relation

f(x) = h(x) exp

−
x∫

−∞

h(t)dt


Hazard functions are the typical inferential goal in survival studies, where X is the time-
to-event variable and takes values on R+. Therefore it is not surprising that models for
survival data often target explicitly h(x). In particular, hazard mixture models define the
prior law over the hazard function defining h(x) as mixture of positive double-measurable
kernels with a random measure µ̃ as mixing measure

h(x) =

∫
Y
k(x | y)µ̃(dy)

This specification was introduced by Dykstra & Laud (1981) with a kernel k(x | y) =

1{0<y≤x}β(x), where β(x) is a measurable non-negative function and µ̃ is a gamma CRM.
Alternative common choices of kernel are

• Rectangular kernel : k(x | y) = 1{|x−y|≤τ}, for τ > 0;

• Bathtub or U-shaped kernel: k(x | y) = 1{0<y≤|x−τ |}, for τ > 0;

• Ornstein-Uhlenbeck (OU) kernel: k(x | y) = 1{0<y≤x}κ exp{−κ(x− y)}], for κ > 0;

• Exponential kernel: k(x | y) = s−1 exp{−x/s}, for s > 0.

James (2005) provides a posterior characterization of hazard mixture model, when µ̃ is a
CRM. While asymptotic results for this model can be found in Peccati et al. (2008) and
De Blasi et al. (2009). More recently, Lijoi & Nipoti (2014) and Camerlenghi et al. (2021)
have introduce two generalizations of the mixture hazard model to treat multivariate data
coming from many heterogeneous populations. The specification described here for hazard
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rates can be used also to model intensities functions of counting processes as will be shown
in Chapter 5.
Other well–established and interesting uses of CRMs are neutral to the right processes and
priors for cumulative hazards, however we omit them from this review since they are not
related with the content of this thesis. We refer the interested reader to Lijoi & Prünster
(2010) and references therein.

1.4 Partial exchangeability and dependent priors processes

Even though exchangeability may appear as a relatively weak assumption, we have clari-
fied that it is essentially a homogeneity condition that implies the existence of a common
unknown distribution generating the data. Real phenomena often present a level of hetero-
geneity that makes exchangeability an unrealistic assumption. For instance, collected data
may refer to different populations, or be collected under different experimental conditions,
or covariate values may be available. Consider, for instance, the case of data referring to
the same variable, but that have been collected under two alternative experimental condi-
tions. These data can be conveniently grouped into two samples, such that observations
corresponding to the same experimental condition are in the same sample. In this case, if
overall exchangeability were assumed, the inherent heterogeinty across samples would be
ignored. However, even assuming exchangeability within and independence across sam-
ple does not appear optimal, since it means to ignore any possibile connection between
different samples. A more realistic assumption is instead partial exchangeability.

Definition 1.12 (Partial Exchangeability). Let X = (Xn)n≥1 and Y = (Yn)n≥1 be two col-
lections of random variables taking values respectively in the Polish spaces (X,X) and (Y,Y). If
∀n1 ≥ 2 and ∀n2 ≥ 2 the law of (X1, . . . , Xn1 , Y1, . . . , Yn2) is invariant with respect to permuta-
tions within each group of random variables, i.e.,

(X1, . . . , Xn1 , Y1, . . . , Yn2)
d
= (Xσ1(1), . . . , Xσ1(n1), Yσ2(1), . . . , Yσ2(n2))

for any σ1 and σ2 permutations of respectively [n1] and [n2], then the two sequences are said par-
tially exchangeable.

The definition of partial exchangeability can be extended also to more than two sequences
(see Chapter 2 and, in particular, Section 2.1). See also Aldous (1985) for a complete dis-
cussion of exchangeability and its extensions. From an inferential point of view, partial
exchangeability entails that the order of the observations within each sequence is non-
informative (i.e. marginal exchangeability for each sequence), while the belonging to a
specific sequence is relevant and has to be taken into account.
Also in this case an extension of de Finetti’s representation holds true and gives us insights
regarding how to model partial exchangeable data. Let PX be the space of all probability
measures on X and PY be the space of all probability measures on Y.
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Theorem 1.10 (de Finetti, 1938). Two sequences of random variables (Xn)n≥1 and (Yn)n≥1 are
partially exchangeable iff there exists a probability measure Q on PX ×PY such that, ∀n1 ≥ 1 and
∀n2 ≥ 1 and A1, A2, . . . , An1 , B1, B2, . . . , Bn2 , with Ai ∈ X for i = 1, . . . , n1 and Bi ∈ Y for
i = 1, . . . , n2

P[X1 ∈ A1, . . . , Xn1 ∈ An1 ,Y1 ∈ B1, . . . , Yn2 ∈ Bn2 ] =

∫
PX×PY

n1∏
i=1

p1(Ai)

n2∏
i=1

p2(Bi)Q(dp1 × dp2)

The theorem can be equivalently be written as

(Xi, Yj) | p̃1, p̃2
iid∼ p̃1 × p̃2 for i = 1, . . . , n1 and j = 1, . . . , n2

(p̃1, p̃2) ∼ Q

whereQ is a probability measure on PX×PY that plays the role of the prior and encodes the
dependence between p̃1 and p̃2 and betweenXi and Yj . WhenQ has an infinite dimensional
support, it is said dependent nonparametric prior and p̃1 and p̃2 are dependent processes (i.e. the
main topic of this work).

Starting from the pioneering works of Cifarelli & Regazzini (1978) and of MacEachern
(1999, 2000), Bayesian nonparametric contributions for non-exchangeable data have grown
substantially in the last two decades, see Dunson (2010), Foti & Williamson (2015), and
Müller et al. (2015) for interesting reviews. A large class of dependent nonparametric pri-
ors admits an almost-sure discrete representation such that

p̃i
a.s.
=
∑
k≥1

J̄k,iδθk,i , i = 1, 2 (1.5)

Starting from 1.5 and imposing explicitly a dependence between weights and/or atoms
of (p̃1, p̃2) allows to model jointly the distribution of the two groups: this approach led to
dependent Dirichlet processes (DDP) (MacEachern, 1999, 2000; Quintana et al., 2020), de-
pendent stick-breaking processes, kernel stick-breaking processes (Dunson & Park, 2008),
probit stick-breaking processes (Rodriguez & Dunson, 2011) and others. Despite their flex-
ibility and the availability of suitable conditional Markov chain Monte Carlo (MCMC)
schemes for posterior computations, it is very difficult to derive analytical results for these
processes; it is often not clear how dependence of the series reflects at the level of the
observables and therefore such methods may lack of transparency. A second popular strat-
egy, often more manageable analytically, consists in working directly on the law of multi-
dimensional vectors of CRMs (Epifani & Lijoi, 2010; Griffin & Leisen, 2017) or in combin-
ing (conditionally) independent CRMs, using either additive structures (Müller et al., 2004;
Griffin et al., 2013; Lijoi & Nipoti, 2014; Lijoi et al., 2014a,b), nested structures (Rodriguez
et al., 2008; Camerlenghi et al., 2019a), or hierarchical structures (Teh et al., 2006; Camer-
lenghi et al., 2019b). CRMs are then normalized in order to obtain NRMIs.
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1.4.1 Completely random vectors based processes

The notion of completely random measure can be extended to the multivariate case through
the concept of completely random vector. Here we provide a quick review of bivariate
completely random vectors, however all the results can be straightforwardly extended to
vectors with a number d ≥ 2 of entries.

Definition 1.13 (Completely random vector - CRV). Let µ = (µ̃1, µ̃2) be a vector of CRMs
on X. We say that µ is a completely random vector (CRV) if, for every collection of pairwise dis-
joint sets (Ai)

n
i≥1 in X, the random vectors (µ̃1(A1), µ̃2(A1)), . . . , (µ̃1(An), µ̃2(An)) are mutually

independent.

Considering again the case with no fixed atoms and no deterministic drift, we have a mul-
tivariate analogue of the Lévy-Khintchine representation, that reads

E
[
e−µ̃1(f1)−µ̃2(f2)

]
= exp

−
∫

R2
+×X

(1− e−s1 f1(x)−s2 f2(x)) v(ds1, ds2, dx)

 (1.6)

for any f1, f2 : X→ R+ measurable and almost surely integrable functions, where µ̃j(fj) =∫
X
fj(x)µ̃j(dx) and

v(ds1,ds2,dx) = ρx(ds1,ds2)α(dx)

is called joint Lévy intensity. As in the univariate case, one may obtain the CRV starting
from an underlying PRM N on R+ × R+ × X with intensity v(ds1, ds2, dx) as(

µ̃1(dx)

µ̃2(dx)

)
=

∫
R+×R+

(
s1

s2

)
N(ds1, ds2, dx)

In the following we are focusing on homogeneous CRVs, where jumps and locations are
independent and the Lévy intensity reads v(ds1, ds2, dx) = ρ(s1, s2)ds1ds2α(dx), where
ρ(s1, s2) is often named joint Lévy density. From the jointy Lévy density, we can retrieve the
marginal Lévy density ρj of the j-th component of the vector as

ρ1(s) =

∫ +∞

0
ρ(s, s2)ds2

ρ2(s) =

∫ +∞

0
ρ(s1, s)ds1

Finally, the bivariate Laplace exponent reads

ψb(λ1, λ2) :=

∫
R2
+×X

[1− e−λ1s1−λ2s2 ]v(ds1,ds2,dx).
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Figure 1.2: Simulation steps for a bivariate homogeneous CRV with intensity
v(ds1,ds2,dx) = ρ(ds1,ds2)P0(dx). At step 1 arrival times of a PP on R+ × R+ with in-
tensity ρ(ds1,ds2) are sampled, at step 2 a atom from P0(dx) is sampled for each couple of
jumps, at step 3 the i.i.d. atoms are associated to the couples of jumps. To get the corre-
spondent NRMIs, it is enough to normalize the two sequences of jumps.

Figure 1.2 summarizes the steps to sample a bivariate homogeneous CRV. For more details
on completely random vectors and an interesting account of their dependence structure,
we refer to Catalano et al. (2021).
In a way completely similar to that described in Section 1.3.1, the coordinates of a CRV
may be normalized in order to obtain two random probability measures. Note that the
correspondent normalized measures are as

p̃1 =
µ̃1(·)
µ̃1(X)

a.s.
=
∑
k≥1

J̄kδθk , p̃2 =
µ̃2(·)
µ̃2(X)

a.s.
=
∑
k≥1

W̄kδθk .

GM-dependent completely random measures

GM-dependent completely random measures and their normalized version have been in-
troduced and studied in Lijoi et al. (2014a); Lijoi & Nipoti (2014) and Lijoi et al. (2014b).
The intuitive idea behind these dependent processes is to generate dependent CRMs as
sum of common and idiosyncratic components. To construct such processes one may start
considering the dependent PRMs proposed in Griffiths & Milne (1978) and then apply The-
orem 1.9.

Definition 1.14 (GM-dependent CRMs). Let (Ñ1, Ñ2) be a vector of Griffiths–Milne (GM) de-
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pendent PRMs as in Griffiths & Milne (1978) and define the CRMs µ̃l(dy) =
∫
R+

sÑl(ds, dy), for

l ∈ {1, 2}. Then (µ̃1, µ̃2) is said to be a vector of GM-dependent CRMs and we write

(µ̃1, µ̃2)
d
= GM-dependent CRMs

Proposition 1.2 (Lijoi et al. 2014a). If (µ̃1, µ̃2)
d
= GM-dependent CRMs, then there exist µ0, µ1,

and µ2 independent CRMs, such that

µ̃1 = µ0 + µ1

and
µ̃2 = µ0 + µ2

Moreover if the Lévy intensities of µ0, µ1, and µ2 are respectively

v0(ds, dy) = θ(1− z)P0(dy)ρ(s)ds,

v1(ds, dy) = θ z P0(dy)ρ(s)ds,

v2(ds, dy) = θ z P0(dy)ρ(s)ds

then µ̃1 and µ̃2 are CRMs with marginal Lévy intensities given by v(ds, dy) = θ P0(dy)ρ(s)ds.

Notice that the hyperparameter z controls the dependence between the two CRMs, since
when z = 0, µ̃1

a.s.
= µ̃2, while z = 1 implies µ̃1 ⊥ µ̃2.

Proposition 1.3 (Lijoi et al. 2014a). If (µ̃1, µ̃2)
d
= GM-dependent CRMs, the joint Laplace func-

tional transform of (µ̃1, µ̃2) is given by

E[e−µ̃1(f1)−µ̃2(f2)] = e−θ z [ψ(f1)+ψ(f2)]−θ (1−z)ψ(f1+f2) =: e−θ ψz(f1,f2)

for any f1, f2 : X → R+ measurable and almost surely integrable functions and where θ ψ(f) =∫
R+×X

[1− e−sf(x)]v(ds, dx).

Thus, it turns out that GM-dependent CRMs form a CRV, whose Lévy intensity is

v(ds1,ds2,dx) = {z [ρ(ds1)δ0(ds2) + ρ(ds2)δ0(ds1)] + (1− z) ρ(ds1)δs1(ds2)} θ P0(dx)

and on which usually it is imposed an hyper-prior on z, e.g. a uniform prior on [0, 1].

Dependence through Clayton Lévy copula

An elegant alternative strategy to define the joint law of a CRV is provided by Lévy copulae
(see Cont & Tankov, 2004; Kallsen & Tankov, 2006; Tankov, 2016, for an extensive treatment
of the topic).
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Once the marginal behavior of the components of a CRV has been fixed, the dependence
may be established using Lévy copulae, analogously to what can be done with copulae for
real-valued random variables according to Sklar’s theorem (Sklar, 1959).

Definition 1.15 (Lévy copulae). A function C : [0,+∞]d → [0,∞] is a Lévy copula if satisfies
the following conditions

1. C is d-non-decreasing, i.e. for every set A = [l1, u1]× · · · [ld, ud] ⊂ [0,+∞)d, with lj ≤ uj ,
for j = 1, . . . , d, ∑

sign(v)C(v) ≥ 0

where the sum runs all over the vertexes v = {v1, . . . , vk} of A and sign(v) = 1, if vk = lk
for an even number of coordinates, while sign(v) = −1, otherwise;

2. if s = {s1, . . . , sd} is such that sj = 0 for some j then C(s) = 0;

3. C(+∞, . . . ,+∞, s,+∞, . . . ,+∞) = s, ∀s ∈ [0,+∞].

The result for Lévy copulae corresponding to Sklar’s theorem is the following

Theorem 1.11 (Kallsen & Tankov, 2006). LetU be the tail integral corresponding to a d-dimensional
CRV with Lévy density ρ, i.e.

U(s1, . . . , sd) =

+∞∫
s1

· · ·
+∞∫
sd

ρ(u1, . . . , ud)du1 · · · dud

and U1, . . . , Ud the marginal tail integrals, i.e.

Uj(s) =

+∞∫
0

· · ·
+∞∫
0

+∞∫
s

+∞∫
0

· · ·
+∞∫
0

ρ(u1, . . . , ud)du1 · · · dud =

+∞∫
s

ρj(uj)duj for j = 1, . . . , d.

Then there exists a d-dimensional copula C such that for all s ∈ [0,+∞]d,

U(s1, . . . , sd) = C(U1(s1), . . . , Ud(sd))

After applying Theorem 1.11, we can recover the multivariate Lévy density in the following
way

ρ(ds1, . . . ,dsd) =
∂

∂u1, . . . ∂ud
C(u1, . . . , u2)

∣∣∣∣∣
u1=U1(s1),··· ,ud=Ud(sd)

ρ1(ds1) · · · ρd(dsd)

For example, a bivariate CRV with independent components is obtained with

C(s1, s2) = s1δ+∞(s2) + s2δ+∞(s1)
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while maximal dependence between the two components of a bivariate CRV corresponds
to the copula

C(s1, s2) = min{s1, s2}

A interesting example of Lévy copula is the Clayton Lévy copula, defined as

Cθ(s1, s2) = (s−θ1 + s−θ2 )−1/θ for θ ∈ (0,+∞)

The attractive feature of Clayton’s copula is that it depends only on one parameter, θ, that
fully characterizes the degree of dependence between the resulting CRMs µ̃1 and µ̃2 and

lim
θ→0

Cθ(s1, s2) = s1δ+∞(s2) + s2δ+∞(s1),

lim
θ→+∞

Cθ(s1, s2) = min{s1, s2}.

Compound Random Measures

Another interesting proposal that makes use of CRVs are compound random measures
(Griffin & Leisen, 2017).

Definition 1.16 (Compound random measures). Compound random measures are the coordi-
nates of a CRV defined by a score distribution h and a directing Lévy process with intensity v∗ such
that the Lévy density of the vector is

ρ(s1, . . . , sd) =

∫
h(s1, . . . , sd|z)v∗(dz)

where h(·|z) is a probability mass function or a p.d.f.

Compound random measures admit the following series representation

µ̃j =
+∞∑
k=1

mj,kJkδθk

where mj,k
iid∼ h and η̃ =

+∞∑
k=1

Jkδθk is a CRM with Lévy intensity v∗(dz)α(dx). The vector

of random probability measures defined by normalizing each dimension of the CRV of
compound random measures is called normalized compound random measure (NCoRM).

1.4.2 Hierarchical processes

An undoubtedly notable strategy to create dependent processes are hierarchical construc-
tions, according to which dependent processes may be seen as conditionally independent
and identically distributed from a certain random probability measure over the space of
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probability measures, eg. a DP with random base measure. The most famous example
within this class is the hierarchical Dirichlet process (HDP) introduced by Teh et al. (2006)

p̃j | p̃0
iid∼ DP (θj , p̃0) j = 1, . . . , d p̃0 ∼ DP (θ, P0)

Hierarchical CRM

The hierarchical structure has been recently generalized to CRMs by Camerlenghi et al.
(2021).

Definition 1.17 (Hierarchical CRMs). (µ̃1, . . . , µ̃d) is said to be a vector of hierarchical CRMs if

µ̃j | µ̃0
ind∼ CRM(vj) j = 1, . . . , d

µ̃0 ∼ CRM(v0)

with vj and v0 Lévy intensities of the form

vj(ds, dx) = ρj(s) ds µ̃0(dx) j = 1, . . . , d

v0(ds, dx) = ρ0(s) ds θ0P0(dx)

The joint Laplace transform of a bivariate vector of hierarchical CRMs (µ̃1, µ̃2) is given by

E[e−µ̃1(f1)−µ̃2(f2)] = e
−θ0

∫
X
ψ(0)[ψ(1)(f1)+ψ(2)(f2)]P0(dx)

where ψ(l)(f) =
∫
R+

[1− e−sf(x)]ρl(s)ds, for l ∈ {0, 1, 2}.

Notice that the vector (µ̃1, . . . , µ̃d) of hierarchical CRMs is a CRV only conditionally to µ̃0,
but not marginally.

Hierarchical NRMIs

The hierarchical structure for NRMIs provided in Camerlenghi et al. (2019b) is as in the
following definition.

Definition 1.18 (Hierarchical NRMIs). (p̃1, . . . , p̃d) is said to be a vector of hierarchical NRMIs
if

p̃j | p̃0
ind∼ NRMI(ρ, θ, p̃0) j = 1, . . . , d

p̃0 ∼ NRMI(ρ0, θ0, P0)

where p̃ ∼ NRMI(ρ, θ, P0) denotes that p̃ is obtained normalizing a CRM with Lévy intensity
v(ds, dx) = ρ(ds)θP0(dx).
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Notice that, if one uses gamma CRMs to define hierarchical NRMIs, the resulting process
is a HDP. Thus, even if HDPs have been firstly introduced by Teh et al. (2006) exploiting
the series representation in (1.5), they admit a representation in terms of NRMIs.

1.4.3 Nested processes

Another well-studied and popular approach to model dependent random probability mea-
sures are nested processes, where the random probabilities are again conditionally sampled
from a random measure over the space of random probability measures. The Dirichlet
version of such processes is the nested Dirichlet process (NDP), has been proposed by Ro-
driguez et al. (2008) and reads

p̃j | p̃0
iid∼ p̃0

p̃0 ∼ DP (θ0, DP (θ, P0)).

The NDP has been extended to the broader class of NRMIs in Camerlenghi et al. (2019a).
More details on nested and hierarchical processes can be found in Chapter 2.
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Chapter 2

Dependent Species Sampling
Processes

In this chapter, we define and study in detail a general class of models, where the ob-
servables are obtained by firstly sampling a random partition and then associating inde-
pendent and identically distributed values to the sets of observations in the partition. We
name the priors in this class dependent species sampling processes, or multivariate species sam-
pling processes (mSSPs), because they are the natural generalization of the species sampling
processes (SSPs) of Pitman (1996) to a multivariate setting.
In classical species sampling problems, a random sample (X1, . . . , Xn) is extracted from
a population of subjects and each observed value corresponds to the species of a drawn
individual. Denoting with p̃ the unknown distribution of species in the population, clearly
we have

Xi | p̃
iid∼ p̃ for i = 1, . . . , n.

Therefore, to develop Bayesian models for species sampling problems, one need to define
a prior over the unknown distribution p̃. In the univariate setting, the problem can be
tackled relying on the large class of priors introduced by Pitman (1996) as generalization
of the Dirichlet process of Ferguson (1973).

Definition 2.1 (Species sampling process - SSP). A random probability measure p̃ is a species
sampling process (SSP) if

p̃
a.s.
=
∑
h≥1

πhδθh +

1−
∑
h≥1

πh

P0

where the atoms (θh)h≥1 are i.i.d from the non-atomic distribution P0, the weights π = (πh)h are
such that P[0 ≤ πh ≤ 1] = 1 for any h, and atoms and weights are independent. Moreover, if∑

h≥1 πh
a.s.
= 1, p̃ is said proper.

An interesting extension of the species sampling problem arises when many samples are
drawn from multiple populations that may share some species. In this chapter, we study
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this extension and the correspondent class of processes. Analogously to species sampling
processes, which encompass as special cases the vast majority of priors within the ex-
changeable framework, also their multivariate version generalizes a great number of pri-
ors for partial exchangeability, e.g. single-atoms DDP, hierarchical NRMIs, nested NRMIs,
GM-dependent NRMIs, NCoRM, etc. See Section 1.4. Thus, this class provides a unifying
point of view to study existing partially exchangeable models, understanding their com-
mon features and delineate how to construct new priors within and outside this class. It
is important to clarify that, while mSSPs are a natural generalization of SSPs, they are not
a trivial one. Indeed, while defining and studying mSSP, we had to carefully consider the
dependence induced across populations, which is an aspect completely absent in SSPs.
The structure of the chapter is the following. In Section 2.1, we provide a definition of
partial exchangeability, suited for an arbitrary number of populations and that is alter-
native but equivalent to Definition 1.12. Then, given the central role played by random
partitions in mSSP, Section 2.3 is entirely devoted to partially exchangeable partitions. In
particular, Section 2.2.1 formally introduces partially exchangeable partitions keeping the
sample size n fixed, while Section 2.2.2 extends the framework to collections of random
partitions that arise when n increases. Section 2.3 focuses on the law of the observables
under a mSSP, while Section 2.4 introduces mSSPs, their moments and a full characteriza-
tion of their law. Section 2.5 presents a subclass of mSSPs, which we named regular and
for which an outstanding characterization of dependence in terms of correlation between
the processes holds true. Finally, Section 2.6 provides a core algorithm to make inference
for any mSSP, based on predictive distributions. It has to be intended as starting point to
derive MCMC algorithms for specific dependent processes within the class.

2.1 Partial exchangeability for an arbitrary number of populations

As already mentioned in Section 1.4, when statistical data are sampled from a number J of
distinct populations, the homogeneity assumption of exchangeability is too restrictive since
it does not take into account heterogeneity across populations. On the other hand, the as-
sumption of independence across populations does not allow to borrow information across
experiments in the Bayesian learning. A natural compromise between the aforementioned
extreme cases is partial exchangeability (de Finetti, 1938), introduced in Section 1.4, that
entails exchangeability within but not across different populations, while still allowing for
dependence between them.
An alternative way to formalize this framework is to encode population labels in the fol-
lowing way. We assume the number J of distinct populations/groups to be fixed a-priori,
as it usually happens in statistical applications, for each sample size n. Moreover, for every
n, we define a partition Dn = {D1, . . . , DJ} of [n] = {1, . . . , n}, where the Dj are in order
of appearance, i.e. that 1 ∈ D1 and the smallest element of [n] −

⋃j−1
i=1 Di is in Dj , for all

j = 2, . . . , J . Dn is used to encode the population labels corresponding to the first n obser-
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vations, in the sense that i ∈ Dj means that the i-th observed value comes from population
with label j. Notice that Dj will be equal to the empty set if none of the n extracted obser-
vations belong to population j. Let us now consider those permutations of the observable
that do not change the labels assigned by Dn.

Definition 2.2 (Dn-invariant permutation). A Dn-invariant permutation is a permutation σ of
[n] that, when written in cycle notation, is such that elements in the same cycle do not belong to
different sets in the partition Dn, which is equivalent to

{σ(D1), . . . , σ(DJ)} = {D1, . . . , DJ}

Letting the sample size n increase, a sequence D = (Dn)n≥1 of partitions will arise and for
every n, Dn is the partition obtained from Dn+1 leaving the element n+ 1 out.
We can provide the definition of partial exchangeability as follows.

Definition 2.3. A sequence of random variables X = {Xi, i ≥ 1} is partially exchangeable with
respect to D if and only if, for every natural number n and every Dn-invariant permutation σ,

(X1, . . . , Xn)
d
= (Xσ(1), . . . , Xσ(n)).

Notice that when J = 2, Definition 2.3 is equivalent to Definition 1.12, while when J =

1, Definition 2.3 coincides with Definition 1.1. For sake of notation, in the following we
add the population labels as superscripts of the Xs’. Thus, we denote with X

(ji)
i the i-

th observation in the sample, where ji is the label of the population from which the i-th
observation has been extracted. In the following we are assuming that the sequence {X(ji)

i :

i ≥ 1 and ji = j} is infinite dimensional for every j ∈ [J ] and that, ∀j ∈ [J ] and ∀m ∈ N,
∃n ∈ N such that card(Dj) ≥ m. When this construction is used to model statistical data
from J distinct populations, this coincides with assuming that, at least in principle, it is
possible to sample an infinite number of times from any population of interest and that ∀j ∈
[J ] and ∀m ∈ N, it always exists a finite sample size n such that, after observing a total of n
observations, at least m of those come from population j. Thanks to de Finetti’s theorem,
we can characterize the partial exchangeable sequence X = {X(ji)

i , i ≥ 1} as arising from
a vector of J dependent random probabilities. More precisely, for every sample size n, it
holds

X
(ji)
i | (p̃1, . . . , p̃J) ∼ p̃ji for i = 1, . . . , n

(p̃1, . . . , p̃J) ∼ L,
(2.1)

where L takes the role of the prior in the Bayes-Laplace paradigm and controls depen-
dence, thus borrowing of information, across different populations.
There has been an increasing literature devoted to nonparametric models for partially ex-
changeable data (see Section 1.4), a great number of which correspond to almost-surely
discrete priors. See Müller et al. (2018) and Quintana et al. (2020) for recent reviews. The
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almost-sure discreteness of the elements in (p̃1, . . . , p̃J) induces ties across and within pop-
ulations, generating a random partition of the observable random variables in X . More-
over, the same structure can be recovered in mixture models, when almost-sure discrete
probabilities measures are used as mixing measures; in this case a random partition is de-
fined on an underlying non-observable sequence of random variables (cf. Section 1.2.2).
For all the instances proposed in the literature, the law of the random partition is a crucial
aspect, because it controls dependence across samples and borrowing of strength.

2.2 Partially exchangeable random partitions

2.2.1 Finite partially exchangeable random partitions

Denote with Dn = {D1, . . . , DJ} a (non–random) partition of the set of the first n natural
numbers [n] = {1, . . . , n}, where J is fixed and the sets Dj are in order of appearance and
possibly empty. Let Ij be the number of elements in Dj , so that n = I1 + · · · + IJ . When
Dn is used to encode the population labels of observable data, Ij is the size of the sub-
sample extracted from the population with label j. Consider now Πn = {A1, . . . , AK}, a
random partition of [n], where Al is not empty for all l = 1, . . . ,K and the Al are in order
of appearance.

Definition 2.4 (Finite Partially Exchangeable Random Partition). Πn is a finite partially ex-
changeable random partition with respect to Dn if and only if its distribution is invariant with
respect to any Dn-invariant permutation σ, i.e.

P (Πn = {σ(A1), . . . , σ(AK)}) = P (Πn = {A1, . . . , AK})

Denoting with σ(Πn) the partition obtained swapping the element of [n] according to σ,
clearly by definition we have

Πn
d
= σ(Πn)

Example 2.1. Let n = 7 and Dn = {{1, 2, 3}, {4, 5, 6, 7}}. Consider a realization of Πn given by
Πn = {{1, 4, 5, 7}{2, 3, 6}} and the Dn-invariant permutation σ = (6, 7), if Πn is a finite partially
exchangeable partition we have

P

Πn =

1

2

3

4

5

6

7

 = P

Πn =

1

2

3

4

5

6

7


where the red circles denote that the element belongs to A1, while the blue squares denotes that the
element belongs to A2.
Consider instead, the Dn-invariant permutation σ = (1, 2)(4, 5)(6, 7), if Πn is a finite partially
exchangeable partition, ordering the sets according to the order of appearance, we have
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P

Πn =

1

2

3

4

5

6

7

 = P

Πn =

1

2

3

4

5

6

7


Denote with nl,j the cardinality ofAl∩Dj and collect all the cardinalities in aK×J matrix of
counts n, whose element at position (l, j) is given by nl,j . In the case which Dn encodes the
population labels of observable data, Πn can usually be interpreted as a latent or observable
clustering structure. Thus, nl,j is the number of units from sample j that belong to cluster
l. We use nj to denote the j-th column of n.

Lemma 2.1. If Πn is a finite partially exchangeable random partition with respect to Dn, then

P(Πn = {A1, . . . , AK}) = fn(n) (2.2)

Proof. We want to prove that the probability law of a partially exchangeable random parti-
tion Πn is a function only of the matrix of counts n. Note that, given Dn, any realization of
the partition Πn = {A1, . . . , Ak} can be deterministically described as function of n and a
number J of sequences Sj = (xj,1, xj,2, . . . , xj,Ij ), for j = 1, . . . , J . Sj is a sequence contain-
ing the elements in Dj , in a specific order, so that A1 = {xj,i : i = 1, . . . , n1,j , j = 1, . . . , J},
A2 = {xj,i : i = n1,j + 1, . . . , n1,j + n2,j , j = 1, . . . , J}, and so on and so forth. There-
fore Πn = h(n, S1, . . . , SJ), where h is used to denote a deterministic function. Finally,
we have that if h(n, S1, . . . , SJ) = {A1, . . . , Ak}, then for every collection of permutations
(πj)

J
j=1, there exists a Dn-invariant permutation σ such that h(n, π1(S1), . . . , πJ(SJ)) =

{σ(A1), . . . , σ(Ak)} and since P({σ(A1), . . . , σ(AK)}) = P ({A1, . . . , AK}) by hypothesis,
we have that P({A1, . . . , AK}) = f(n).

Notice that if a Dn-invariant permutation is applied to the elements of {A1, . . . , AK}, such
permutation may at most induce permutations of the rows of n. To clarify this point we
provide an example.

Example 2.2. Let n = 7 and Dn = {{1, 2, 3}, {4, 5, 6, 7}}. Consider a realization of Πn given by
Πn = {{1, 4, 5, 7}{2, 3, 6}}, then the resulting matrix n is

n =

(
1 3

2 1

)

and therefore P

Πn =

1

2

3

4

5

6

7

 = fn

(
n1=

[
1

2

]
,n2=

[
3

1

])
.

Consider the Dn-invariant permutation σ1 = (2, 3)(4, 5, 6, 7). The resulting partition is σ(Πn) =
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{{1, 4, 5, 6}, {2, 3, 7}} and the resulting matrix of counts is

n(σ1) =

(
1 3

2 1

)

and therefore P

Πn =

1

2

3

4

5

6

7

 = fn

(
n1=

[
1

2

]
,n2=

[
3

1

])
.

Consider the Dn-invariant permutation σ2 = (1, 2, 3)(4, 5, 6, 7). The resulting partition (or-
dering the sets according to the order of appearance) is σ(Πn) = {{1, 3, 7}, {2, 4, 5, 6}} and the
resulting matrix of counts is

n(σ2) =

(
2 1

1 3

)
where the two rows have been swapped.

Therefore P

Πn =

1

2

3

4

5

6

7

 = fn

(
n1=

[
2

1

]
,n2=

[
1

3

])
.

It turns out that all the functions fn satisfying certain conditions are the law of a finite par-
tially exchangeable random partition. However, before introducing such conditions and
prove the characterization, it is important to clarify a technical aspect about the support of
the matrix of counts n. It is straightforward to see that, given the partition Dn and fixing
K, n satisfies the following

(n-i) n ∈ NK×J0 , where N0 = {0, 1, 2 . . .} ;

(n-ii)
∑K

l=1 nl,j = Ij ;

(n-iii)
∑J

j=1 nl,j > 0.

Therefore we may define

ρK(I1, . . . , IJ) = {n : n ∈ NK×J0 ,

K∑
l=1

nl,j = Ij ,

J∑
j=1

nl,j > 0 for l = 1, . . . ,K; j = 1, . . . , J}

However, not all matrices in ρK(I1, . . . , IJ) correspond to a partition (in order of appear-
ance), when such partition exists we say that n is a compatible matrix of counts according to
Dn (or, shortly, n is Dn-compatible). To clarify why not all the matrices in ρK(I1, . . . , IJ)

correspond to a partition, we provide the following two examples.
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Example 2.3. Let n = 7, Dn = {{1, 2, 3}, {4, 5, 6, 7}} and K=2. The matrix

n =

(
0 3

3 1

)

is not a compatible matrix of counts according to Dn. The order of appearance requires n1,1 > 0.

Example 2.4. Let n = 7, Dn = {{1, 3, 4}, {2, 5, 6, 7}} and K=3. The matrix

n =

1 0

1 0

1 4


is not a compatible matrix of counts according to Dn. The order of appearance requires n1,2 +n2,2 >

0.

Finally, we denote with

ρ∗K(I1, . . . , IJ) = {n : n ∈ ρK(I1, . . . , IJ), n is Dn-compatible}

and

ρ̄∗n(I1, . . . , IJ) =

n⋃
K=1

ρ∗K(I1, . . . , IJ).

Since the support of n depends on Dn, the detailed and correct notation for the matrix of
counts should be nDn , but for sake of notation we omit the subscript.

Proposition 2.1. A random partition Πn is a finite partially exchangeable random partition with
respect to Dn if and only if there exists a function fn such that

P(Πn = {A1, . . . , AK}) = fn(n) (2.3)

where fn satisfies the three following conditions:

(ff-i) fn : ρ̄∗n(I1, . . . , IJ)→ [0, 1]

(ff-ii)
∑
fn(n) = 1, where the sum runs all over the space P([n]) of partitions (in order of

appearance) of [n].

(ff-iii) fn((n1, . . . ,nJ)) = fn((α(n1), . . . , α(nJ))), for every α permutation of K elements that
generates a compatible matrix of counts according to Dn.

Proof. The if part can be proved noticing that conditions (ff-i) and (ff-ii) ensure that fn en-
codes a probability measure over the space of partitions of [n] and thus imply the existence
of a random partion Πn. Moreover by condition (ff-iii), we have that for every Dn-invariant
permutation σ

P({σ(A1), . . . , σ(AK)}) = P ({A1, . . . , AK})
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The only if part is proved noticing that (2.3) holds true by Lemma 2.1 and being Πn a
random partition of [n], conditions (ff-i) and (ff-ii) are trivially satisfied. Moreover, since
Πn is partially exchangeable with respect to Dn, for each α permutation of K elements that
generates a compatible matrix of counts according to Dn and each compatible matrix of
counts n, there exists a Dn-invariant permutation of σ and a realization {A1, . . . , AK} of
Πn such that

P({σ(A1), . . . , σ(AK)}) = fn((α(n1), . . . , α(nJ))).

2.2.2 Infinite partially exchangeable random partitions

When random partitions are used to model statistical data, usually one admits that new
observations may be collected, thus what is more interesting is the study of the sequence
of random partitions which is obtained letting n vary. When considering a whole sequence
of partitions, we need to require a condition of coherence.

Definition 2.5 (Coherent sequence of partitions). A sequence D = (Dn)n≥1 of partitions of [n]
is said coherent if, for every n, Dn is the partition obtained from Dn+1 leaving the element n + 1

out.

Denote with D = (Dn)n≥1 a coherent sequence of partitions of [n]. Consider an almost
surely coherent sequence Π = (Πn)n≥1 of random partitions, such that Πn is a random
partition of [n].

Definition 2.6 (Infinite Partially Exchangeable Random Partition). Π is an (infinite) partially
exchangeable random partition with respect to D if and only if Πn is a finite partially exchangeable
random partition with respect to Dn , for every n > 0, which is

P (Πn = {σ(A1), . . . , σ(AK)}) = P (Πn = {A1, . . . , AK})

for every Dn-invariant permutation σ, for every n.

Proposition 2.2. Π is an infinite partially exchangeable random partition with respect to D if and
only if there exists a function f such that

P(Πn = {A1, . . . , AK}) = f(n) ∀n ≥ 1 (2.4)

where f is a function satisfying the three following conditions:

(f-i) f :
+∞⋃
n=1

ρ̄∗n(I1, . . . , IJ)→ [0, 1],

(f-ii) f(1) = 1 and f(n) =
K+1∑
l=1

f(nlj+)

where j is the index of the set in Dn+1 that contains the element n+1,nlj+ denotes the matrix
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whose entries are equal to those of n except the (l, j)-th element that has been increased by 1.
Clearly, n(K+1)j+ has one row more than n.

(f-iii) f((n1, . . . ,nJ)) = f((α(n1), . . . , α(nJ))),
for every α permutation of K elements that generates a Dn-compatible matrix of counts.

We call the function f partially exchangeable partition probability function (pEPPF).

Proof. First of all, we prove that, given a coherent sequence of partitions D of [n], for any
function f satisfying conditions (f-i)-(f-iii) there exists Π infinite partially exchangeable ran-
dom partition with respect to D. Notice that condition (f-ii) implies condition (ff-ii) in
Proposition 2.1, so that for every fixed n, there exists Πn a finite partially exchangeable
random partition with respect to Dn. As for the almost surely coherence of Π = (Πn)n≥1,
notice that condition (f-ii) ensures that the marginal law of Πn+1 gives positive probability
to those partitions coherent to Πn, for every Πn such that P[Πn] > 0 and by Ionescu-Tulcea
extension theorem there exists an almost surely coherent sequence Π whose marginals at
every n are provided by the function f . The only if part follows directly from the proof of
Proposition 2.1.

Note that if Dn contains only a set equal to [n] for every n ≥ 1, than the definitions of
partially exchangeable partition and pEPPF coincide with the definitions of exchangeable
partition and exchangeable partition probability function (EPPF) of Pitman (1996). We
conclude this section proving that for every partially exchangeable partition probability
function it can always be constructed a corresponding partially exchangeable sequence of
random variables.

Theorem 2.1. Given a coherent sequence of partitions D of [n], for any function f satisfying
conditions (f-i)-(f-iii), there exists a partially exchangeable sequence X whose partition Π, defined
by the random equivalence relation i ∼ i′ iff Xi = X ′i, is a partially exchangeable random partition
with respect to D and whose law is controlled by f . Vice versa, for any partially exchangeable
sequence X with respect to D, the random partition Π, define by the random equivalence relation
i ∼ i′ iff Xi = X ′i, is a partially exchangeable random partition with respect to D .

Proof. We want to show that for every partially exchangeable random partition Π, there
exists a partially exchangeable sequence X , that induces Π through the equivalence rela-
tion i ∼ i′ iff Xi = X ′i. Before doing so, we recall that an infinite sequence X is partially
exchangeable with respect to a coherent sequence of partitions D of [n] if and only if, for
every n ≥ 1 and any Dn-invariant permutation σ

(X1, . . . , Xn)
d
= (Xσ(1), . . . , Xσ(n)).

Now let θ1, θ2, . . . be an i.i.d. sample from a diffuse distribution H, such that θi 6= θj with
probability 1. Define then Xi = θg(i), where the function g : N → N is such that for
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each value i returns the label of set that contains i in the partition Πi. So that Π is the
infinite exchangeable partition induced by X . Lastly, we have to prove that X is partially
exchangeable. Notice that the law of (X1, . . . , Xn) is completely characterized by the laws
of (θ1, . . . , θn) and (Πn), which are both invariant under any Dn-invariant permutation σ.

Indeed, (θ1, . . . , θn)
d
= (θσ(1), . . . , θσ(n)) and, by definition of partially exchangeable random

partition, Πn
d
= σ(Πn). To prove the last part of the theorem, it is enough to notice that

the partition is a deterministic function of the sequence, thus its law has to preserve the
invariance of the sequence to Dn-invariant permutations.

2.3 Multivariate species sampling model

In (univariate) species sampling problems, a random sample (X1, . . . , Xn) is drawn from a
population of individuals and each observed value corresponds to the species of a drawn
individual. An extension of this problem arises when the sample is drawn from multiple
populations that may share some species. In this case, a population label is associated to
each observation: X(ji)

i is i-th observation whose population label is ji. The partition Dn

of [n], introduced in the previous sections, is used to keep track of the population from
which each observation has been sampled, so i ∈ Dj if and only if ji = j. Moreover, we
denote with X∗l the l-th species that appears during sampling and with nl,j the number of
observed individuals extracted from population j that belong to the species X∗l .
The definitions of species sampling model and sequence of Pitman (1996) can be general-
ized to multiple populations as follows.

Definition 2.7 (Multivariate species sampling model). We say that X follows a multivariate
species sampling model (mSSM), if there exists an infinite partially exchangeable random partition
Π = (Πn)n≥1 with respect to D such that, for every n, n-dimensional vectors of elements inX can
be generated by

1. sampling Πn (via pEPPF)

2. sampling independent and identically distributed unique values {X∗1 , . . . , X∗K}, with X∗l
sampled from a non-atomic measure H (independently from Πn), for l = 1, . . . ,K.

Note that it follows trivially by definition that a sequence following a mSSM is partially
exchangeable with respect to D.

Definition 2.8 (Multivariate species sampling sequence). We say that X is a multivariate
species sampling sequence (mSSS) with respect to D if the predictive distribution ofX is given by

X
(j1)
1 ∼ H

X
(jn+1)
n+1 |X1:n ∼

K∑
l=1

pjn+1,l(n) δX∗l + pjn+1,K+1(n)H
(2.5)
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where K is the number of different species/unique values observed in the sample X1:n = {X(ji)
i :

i = 1, . . . , n}, n = (nl,j : l = 1, . . . ,K, j = 1, . . . , J) is the matrix of counts before observing
X

(jn+1)
n+1 and H is a non-atomic distribution. While the collection of functions (pj,l, l = 1, 2, . . .)Jj=1

are such that:

(p-i) pj,l(n) ≥ 0,

(p-ii)
∑K+1

l=1 pj,l(n) = 1, ∀n and ∀j = 1, . . . J ,

(p-iii) pj,l(n)pj′,r(n
lj+) = pj′,r(n)pj,l(n

rj′+), ∀j, j′ ∈ {1, . . . , J} and ∀l, r,

(p-iv) pj,l((n1, . . . ,nJ)) = pj,α−1(l)((α(n1), . . . , α(nJ))), for every α permutation of K ele-
ments that generates a Dn-compatible matrix of counts.

The collection of functions pj,l is called multivariate prediction probability function
(mPPF).

Notice that conditions (p-iii) and (p-iv) are generalization to the partial exchangeable set-
ting of the conditions provided in (Lee et al., 2013). Conditions (p-iii) and (p-iv) guarantee
that the joint distribution defined by (2.5) is invariant with respect to Dn-invariant per-
mutations, for every n, i.e. they ensure partial exchangeability. Condition (p-iii) may be
thought as invariance for future observations, thus, when jn+1 = jn+2, it implies

P(X
(jn+1)
n+1 = X∗l , X

(jn+2)
n+2 = X∗r |X1:n) = P(X

(jn+1)
n+1 = X∗r , X

(jn+2)
n+2 = X∗l |X1:n)

Condition (p-iii) guarantees that the joint distribution is invariant with respect to all Dn-
invariant permutations that do not induce any change on the matrix of counts n (cf. Exam-
ple 2.2). This is a consequence of the fact that any permutation can be expressed as product
of transpositions. Condition (p-iv) instead may be seen as the invariance condition for past
observations because it implies that

P[X
(jn+1)
n+1 = X∗l |X1:n] = P[X

(jn+1)
n+1 = X∗l | σ(X1:n)]

for any Dn-invariant permutation σ. Ultimately it guarantees the invariance also for those
permutations that cause row swapping (cf. Example 2.2). Next theorem shows the equiv-
alence between Definition 2.7 and Definition 2.8 above and has as trivial corollary partial
exchangeability of any mSSS.

Theorem 2.2. X follows a multivariate species sampling model if and only if X is a multivariate
species sampling sequence, i.e. Definitions 2.7 and 2.8 are equivalent.

Proof. To prove the only if part, let X be a mSSM with pEPPF f , setting n equal 1, one
trivially obtain X1,1 ∼ H . For n > 1, define

pj,l(n) =
f(nlj+)

f(n)
∀n, l = 1, . . . , k + 1 and j = 1, . . . , J. (2.6)

33



CHAPTER 2. DEPENDENT SPECIES SAMPLING PROCESSES

Therefore, since f returns the probability of the partition, we have that

pj,l(n) = P
[
X

(jn+1)
n+1 = X∗l |X1:n

]
Thus, the predictive distribution ofX coincides with the expression in (2.5) and the collec-
tion of functions pj,l trivially satisfy conditions (p-i) and (p-ii). Moreover, condition (p-iii)
can be obtained computing

pj,l(n)pj′,r(n
lj+) =

f(nlj+)

f(n)

f((nlj+)rj
′+)

f(nlj+)
=
f((nlj+)rj

′+)

f(n)
= pj′,r(n)pj,l(n

rj′+)

while (p-iv) follows combining (2.6) and (f-iii) in Proposition 2.2.
Let us assume now that X is a multivariate species sampling sequence and consider the
partitions Πn defined by the equivalence relation i ∼ i′ iff X(ji)

i = X
(ji′ )
i′ , for any X(ji)

i and
X

(ji′ )
i′ ∈ X . The if part is proved if one is able to show that the law of such partition is

invariant with respect to any Dn-invariant permutation, for every n. Consider a realization
Πn = {A1, . . . , AK} and denote with Πi the partition obtained by Πn considering only the
first i observations and with n(i) the matrix of counts corresponding to Πi, by (2.5), we
have that

P (Πn = {A1, . . . , AK}) =
n∏
i=2

pji,li(n
(i−1))

where ji and li are the population and species label of the i-th observation. For any Dn

invariant permutation σ, we get

P (Πn = {σ(A1), . . . , σ(AK)}) =

n∏
i=2

pji,α−1(lσ(i))

(
α(n

(σ(i)−1)
1 ), . . . , α(n

(σ(i)−1)
J )

)
By applying (p-iii) and, then, (p-iv) we have

P (Πn = {σ(A1), . . . , σ(AK)}) =
n∏
i=2

pji,α−1(li)

(
α(n

(i−1)
1 ), . . . , α(n

(i−1)
J )

)
=

n∏
i=2

pji,li

(
n

(i−1)
1 , . . . ,n

(i−1)
J

)
which completes the proof.

As one would expect, if we consider just a subset of populations in X , the resulting se-
quence is still a multivariate species sampling sequence as clarified by the following two
propositions.

Proposition 2.3. Defining Xj = {X(ji)
i ∈ X : ji = j}, if X is a multivariate species sam-

pling sequence, then marginallyX(−j) = {X1, . . .Xj−1,Xj+1, . . . ,XJ} is a multivariate species

34



2.3. MULTIVARIATE SPECIES SAMPLING MODEL

sampling sequence.

Proof. The proof follows from Definition 2.7 (or equivalently from Definition 2.8) after a
marginalization over the observations from population j.

Proposition 2.4. IfX is a multivariate species sampling sequence, then marginallyXj is a species
sampling sequence.

Proof. The proof follows from Definition 2.7 (or equivalently from Definition 2.8) after a
marginalization over the observations in populations with labels j′ 6= j and exploiting the
results in Pitman (1996).

Notice that, on the one hand, the exchangeable case can always be recovered within our
framework, setting J = 1, and therefore all the following results hold also in the exchange-
able case. On the other hand, the basic idea underlying Definition 2.7 is even more general
and can be used to define further generalizations, even beyond partial exchangeability, as
long as they correspond to a generative process such that observations can be sampled in
two steps

1. sample a partition (even not partially exchangeable);

2. given the partition, sample the unique values independently from a non-atomic mea-
sure.

where two conditions have been relaxed with respect to Definition 2.7: partial exchange-
ability of the partition and independence between the partition and the unique values.
More details on this can be found in Chapter 6.

2.3.1 Correlation between observables

Typically, when dealing with partial exchangeable sequences, it is of interest to compute
the correlation between two observations (both within and across samples), because such
correlation provides insights on the Bayesian learning mechanism induced by the model.
It turns out that in all mSSMs the correlation is equal to the pEPPF for n = 2 observations,
as shown in the proposition here below.

Proposition 2.5. IfX ∼ mSSM,

Corr(X(ji)
i , X

(jl)
l ) = P(X

(ji)
i = X

(jl)
l ) = P(X

(ji)
i = X

(jl)
l | X(jl)

l )

Proof. Define the random variable Z, so that Z = 1, if X(ji)
i = X

(ji′ )
i′ , and Z = 0, otherwise.
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The first equality follows from

Cov(X
(ji)
i , X

(ji′ )
i′ ) = E

[
Cov(X

(ji)
i , X

(ji′ )
i′ | Z)

]
+ Cov

(
E
[
X

(ji)
i | Z

]
,E
[
X

(ji′ )
i′ | Z

])
= E

[
Cov(X

(ji)
i , X

(ji′ )
i′ | Z)

]
+ 0

= Cov(X
(ji)
i , X

(ji′ )
i′ | Z = 1)P(X

(ji)
i = X

(ji′ )
i′ ) + 0

= P(X
(ji)
i = X

(ji′ )
i′ )Var(X∗).

where X∗ ∼ H and the last equality follows by the independence between the partition
and the unique values.

Therefore in multivariate species sampling models the correlation between any couple of
observations (even those drawn from different populations) is always non-negative. How-
ever, positive correlation between observations across samples is not implied by partial
exchangeability (see Chapter 3). This result tells us also that all dependence and borrow-
ing of strength reside in the sharing of the underlying common atoms. Notice that to prove
Proposition 2.5, the partial exchangeability property of the partition is actually not needed,
the only requirement to obtain the first equality is the independence of the unique values
sampled fromH , while to get the second equality one also need independence between the
unique values and the partition.

2.4 Multivariate species sampling process

As already mentioned, multivariate species sampling models generate sequences of obser-
vations that are partially exchangeable. Thus, by de Finetti’s theorem, there exists a vector
of underlying random probability measures (p̃1, . . . , p̃J), from which the observed data can
be seen as independent random samples.

Definition 2.9 (Multivariate species sampling process 1). WhenX is distributed according to
a multivariate species sampling model, the associated vector of random probabilities (p̃1, . . . , p̃J) in
(2.1) is a multivariate species sampling process (mSSP).

Multivariate species sampling processes are a generalization of the species sampling pro-
cesses of Pitman (1996) as underlined by the following corollary.

Corollary 2.1. If (p̃1, . . . , p̃J) ∼ mSSP then marginally p̃j ∼ SSP.

Proof. The proof follows from Definition 2.7 (or equivalently from Definition 2.8) after a
marginalization over the observations in populations with labels j′ 6= j and exploiting the
results in Pitman (1996).

To move from univariate species sampling processes to their multivariate version the cru-
cial aspect to study is the dependence between the elements in the vector (p̃1, . . . , p̃J). In
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order to do so, we provide in the following both marginal and mixed moments as well as
a full characterization of the joint law of the processes. These results can also be seen as
generalizations to the general classes of SSP and mSSP of the results of joint moments of
normalized completely random measures in the seminal work by James et al. (2006) and,
more recently, of hierarchical normalized completely random measures in Argiento et al.
(2020).

Proposition 2.6. If X follows a mSSM with associated (p̃1, . . . , p̃J) ∼ mSSP (for every measur-
able A such that 0 < H(A) < 1),

Var{p̃j(A)} = P(X
(j)
i = X

(j)
l )H(A){1−H(A)}

for any i and l such that i 6= l andX(ji)
i andX(jl)

l come from population with label j, i.e. ji = jl = j.

Proof.

E{p̃j(A)2} = P(X
(j)
i ∈ A,X

(j)
l ∈ A).

Then we disintegrate with respect to {X(j)
i = X

(j)
l } to recover independence.

P(X
(j)
i ∈ A,X(j)

l ∈ A) = P(X
(j)
i = X

(j)
l )P(X

(j)
i ∈ A,X(j)

l ∈ A | X(j)
i = X

(j)
l )+

+P(X
(j)
i 6= X

(j)
l )P(X

(j)
i ∈ A,X(j)

l ∈ A | X(j)
i 6= X

(j)
l ) =

= P(X
(j)
i = X

(j)
l )H(A) + P(X

(j)
i 6= X

(j)
l )H(A)2.

Finally, Var{p̃j(A)} = E{p̃j(A)2} − E{p̃j(A)}2 = P(X
(j)
i = X

(j)
l )H(A){1−H(A)}.

Therefore the variance can be expressed through two multiplicative terms, one being the
probability of a tie within the population (which depends on the pEPPF only), the other
corresponding to the variance of the random variable 1A(X

(j)
i ), which depends on H(A)

only. Note that

P(1A(X
(j)
i ) = 1) = P(X

(j)
i ∈ A) = P(X

(j)
i ∈ A,X

(j)
l ∈ A | X

(j)
i = X

(j)
l ) = H(A)

2.4.1 Correlation between multivariate species sampling processes

Proposition 2.7. If X follows a mSSM with associated (p̃1, . . . , p̃J) ∼ mSSP (for every measur-
able A such that 0 < H(A) < 1),

Corr{p̃j(A), p̃k(A)} =
Corr(X(j)

i , X
(k)
m )√

Corr(X(j)
i , X

(j)
l )

√
Corr(X(k)

m , X
(k)
n )
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and

Corr{p̃j(A), p̃k(A)} =
P(X

(j)
i = X

(k)
m )√

P(X
(j)
i = X

(j)
l )

√
P(X

(k)
m = X

(k)
n )

for any i, l, m and n such that i 6= l, m 6= n, X(ji)
i and X(jl)

l come from population with label j, i.e.
ji = j and jl = j and X(jm)

m and X(jn)
n come from population with label k, i.e. jm = k and jn = k.

Proof.

E{p̃j(A)p̃k(A)} = P(X
(j)
i ∈ A,Xk,1 ∈ A).

Then we disintegrate with respect to {X(j)
i = X

(k)
m } to recover independence.

P(X
(j)
i ∈ A,X

(k)
m ∈ A) =P(X

(j)
i = X(k)

m )P(X
(j)
i ∈ A,X

(k)
m ∈ A | X(j)

i = X(k)
m )+

+ P(X
(j)
i 6= X(k)

m )P(X
(j)
i ∈ A,X

(k)
m ∈ A | X(j)

i 6= X(k)
m ) =

=P(X
(j)
i = X(k)

m )H(A) + P(X
(j)
i 6= X(k)

m )H(A)2.

Thus,

Cov{p̃j(A), p̃k(A)} = E{p̃j(A)p̃k(A)} − E{p̃j(A)}E{p̃k(A)} =

= P(X
(j)
i = X(k)

m )H(A){1−H(A)}.

Finally, use Proposition 2.6 to compute the correlation and apply Proposition 2.5.

Proposition 2.7 expresses the dependence between the underlying random probabilities in
terms of the law of the sequenceX , in particular as a function of the pEPPF for n = 2. This
result provides an interesting explanation on why the correlation does not depend on the
specific measurable set A: correlation between the random probabilities is a consequence
uniquely of ties between the variables inX .
In the following for sake of simplicity we omit to specify that A is measurable and that
0 < H(A) < 1 (i.e. p̃j(A) has not a degenerate distribution).

Corollary 2.2. IfX follows a mSSM with associated (p̃1, . . . , p̃J) ∼MSSP then

(c-i) Corr{p̃j(A), p̃k(A)} ≥ 0.

(c-ii) Corr{p̃j(A), p̃k(A)} = 0 iff P(X
(j)
i = X

(k)
m ) = 0.

(c-iii) If p̃j and p̃k are equal in distribution then

Corr{p̃j(A), p̃k(A)} =
Corr(X(j)

i , X
(k)
m )

Corr(X(j)
i , X

(j)
l )

=
P(X

(j)
i = X

(k)
m )

P(X
(j)
i = X

(j)
l )

.
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Proof. The corollary trivially follows from Proposition 2.7.

Note that result (c-iii) provides a very straightforward interpretation of what happens
when the probability of a tie across samples approaches the probability of a tie within,
leading to increases in the correlation towards one.

Example 2.5 (Hierarchical Dirichlet processes). If (p̃1, p̃2) are distributed accordingly to a HDP,
i.e.

p̃i | p̃0
i.i.d.∼ DP(θ, p̃0), p̃0 ∼ DP(θ0, P0),

then
P(X

(1)
i = X

(1)
l ) = 1− θ θ0

(1 + θ)(1 + θj)
,

P(X
(1)
i = X(2)

m ) =
1

1 + θ0
,

and
Corr{p̃1(A), p̃2(A)} =

1 + θ

1 + θ0 + θ

Therefore,

lim
θ0→+∞

Corr{p̃1(A), p̃2(A)} = 0 lim
θ→+∞

Corr{p̃1(A), p̃2(A)} = 1

Example 2.6 (Nested Dirichlet processes). If (p̃1, p̃2) are distributed accordingly to a NDP, as
in Section 1.4.3 then

P(X
(1)
i = X

(1)
l ) =

1

1 + θ
,

P(X
(1)
i = X(2)

m ) =
1

(1 + θ0)(1 + θ)
,

and
Corr{p̃1(A), p̃2(A)} =

1 + θ

(1 + θ0)(1 + θ)

Therefore,
lim

θ0→+∞
Corr{p̃1(A), p̃2(A)} = 0 lim

θ0→0
Corr{p̃1(A), p̃2(A)} = 1

Example 2.7 (GM-dependent NRMIs). If (p̃1, p̃2) are GM-dependent NRMIs, i.e. the normalized
version of the CRMs described in Section 1.4.1, with DP process marginals, then

P(X
(1)
i = X

(1)
l ) =

1

1 + θ
,

P(X
(1)
i = X(2)

m ) = θ (1− z) 3F2(θ (1− z) + 2, 1, 1; θ + 2, θ + 2; 1),

and
Corr{p̃1(A), p̃2(A)} = (1− z) θ

1 + θ
3F2(θ (1− z) + 2, 1, 1; θ + 2, θ + 2; 1).
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Therefore,
lim
z→1

Corr{p̃1(A), p̃2(A)} = 0 lim
z→0

Corr{p̃1(A), p̃2(A)} = 1

2.4.2 Higher moments in multivariate species sampling processes

Proposition 2.8. If Xj ∼ SSM (with associated SSP denoted by p̃j) then, for every natural
number q,

E{p̃j(A)q} = E
{
H(A)K

(j)
1:q
}
,

where K(j)
1:q is the random number of species in a sample of size q fromXj , i.e.Xj,1:q.

Proof.

E{p̃j(A)q} = P{Xj,1:q ∈ Aq}.

Then we disintegrate with respect to the partition Π
(j)
q of Xj,1:q to recover independence

and aggregate by symmetry induced by exchangeability.∑
Π

(j)
q ∈P(Xj,1:q)

P
{
Xj,1:q ∈ Aq | Π(j)

q

}
P
{

Π(j)
q

}
=

=

q∑
s=1

H(A)s
∑

Π
(j)
q ∈P(Xj,1:q):Kq=s

P
{

Π(j)
q

}
=

=

q∑
s=1

H(A)s
∑

(n1,...,ns)∈ρs(q)

1

s!

(
q

n1, . . . , ns

)
f(n1, . . . , ns) =

=

q∑
s=1

H(A)sP(K(j)
q = s) = E

{
H(A)K

(j)
q
}
.

where f is the EPPF associated to Π
(j)
q and

(
q

n1,...,ns

)
= q!

n1!···ns! .

Proposition 2.9. Let {A1, . . . , Ah} be a family of pairwise disjoint measurable sets. IfXj ∼ SSM
(with associated SSP denoted by p̃j) then, for every sequence of natural numbers q1, q2, . . . , qh,

E{p̃j(A1)q1 · · · p̃j(Ah)qh} =

= E
[
H(A1)

K
(j)
1:q1 H(A2)

K
(j)
q1+1:q2 · · ·H(Ah)

K
(j)
qh−1+1:qh | E6=

]
P(E6=)

where K(j)
a:b is the number of species in the “block of observations” from the a-th to the b-th observa-

tion, in a sample of size q1 + · · ·+ qh fromXj . We denote each block of observations asXj,a:b. E6=
is the event of no shared species across the blocks of observations.
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Proof. For notational convenience we prove the proposition for h = 2. The general case can
be proven in the same exact way.

E{p̃j(A1)q1 p̃j(A2)q2} = P{Xj,1:q ∈ Aq11 ×A
q2
2 }

where q = q1 +q2. Denote now with Aq1,q2 ⊂ P(Xj,1:q) the set of all possible partitions Π
(j)
q

of the elements inXj,1:q such that the elements inXj,1:q1 and inXj,q1+1:q2 do not belong to
the same set according to Π

(j)
q . It follows that

P{Xj,1:q ∈ Aq11 ×A
q2
2 } =P{(Xj,1:q ∈ Aq11 ×A

q2
2 ) ∩ (Π(j)

q ∈Aq1,q2)} =

=P(Π(j)
q ∈Aq1,q2)P{Xj,1:q ∈ Aq11 ×A

q2
2 | Π

(j)
q ∈Aq1,q2} =

=

q1∑
s1=1

q2∑
s2=1

P(Π(j)
q ∈Aq1,q2 ,K

(j)
1:q1

= s1,K
(j)
q1+1:q2

= s2)×

× P{Xj,1:q ∈ Aq11 ×A
q2
2 | Π

(j)
q ∈Aq1,q2 ,K

(j)
1:q1

= s1,K
(j)
q1+1:q2

= s2} =

=

q1∑
s1=1

q2∑
s2=1

H(A1)s1H(A2)s2P(Π(j)
q ∈Aq1,q2 ,K

(j)
1:q1

= s1,K
(j)
q1+1:q2

= s2)

=E

[
H(A1)

K
(j)
1:q1H(A2)

K
(j)
q1+1:q2 | Π(j)

q ∈Aq1,q2

]
P(Π(j)

q ∈Aq1,q2)

Theorem 2.3. If X ∼ mSSM (with associated mSSP denoted by (p̃1, . . . , p̃J)) then, for every
sequence of natural numbers q1, q2, . . . , qJ ,

E{p̃1(A)q1 · · · p̃J(A)qJ} = E
{
H(A)Kq1,...,qJ

}
,

where Kq1,...,qJ is the overall number of species observed in a sample from X , which contains qj
observations from population j, for each j ∈ {1, . . . , J}, i.e.X1:q1,...,1:qJ .

Proof.

E{p̃1(A)q1 · · · p̃J(A)qJ} = P{Xj,1:qj ∈ Aqj : j = 1, . . . , J},

Then we disintegrate with respect to the possible partitions Πq of X1:q1,...,1:qJ to recover
independence and aggregate by symmetry.

∑
Πq∈P(X1:q1,...,1:qJ

)

P
{
Xj,1:qj ∈ Aqj : j = 1, . . . , J | Πq

}
P
{

Πq

}
=
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=

q∑
s=1

H(A)s
∑

Πq∈P(X1:q1,...,1:qJ
):Kq1,...,qJ=s

f(n1, . . . ,nJ)

=

q∑
s=1

H(A)sP(Kq1,...,qJ = s)

= E
{
H(A)Kq1,...,qJ

}
.

where f is the pEPPF associated to Πq.

Theorem 2.4. Let {A1, . . . , AJ} be a family of pairwise disjoint measurable sets. If X ∼ mSSM

(with associated mSSP denoted by (p̃1, . . . , p̃J)) then, for every sequence of natural numbers q1,q2,
. . .,qJ ,

E{p̃1(A1)q1 · · · p̃J(AJ)qJ} = E

[
H(A1)

K
(1)
1:q1 · · ·H(AJ)

K
(J)
1:qJ | E6=

]
P(E6=).

whereK(j)
1:qj

is the number of species from population j, observed in a sample fromX , which contains
qj observations from population j, for each j ∈ {1, . . . , J}, and E6= is the event of no shared species
across populations in the same sample.

Proof. First we go on the level of observations

E
{ J∏
j=1

p̃j(Aj)
qj

}
= P

{
X1:q1,...,1:qJ ∈

J

×
j=1

A
qj
j

}
,

Denote now with Aq1,...,qJ ⊂ P(X1:q1,...,1:qJ ) the set of all possible partitions Πq of the
elements in X1:q1,...,1:qJ such that the elements in Xj,1:q1 and in Xj′,1:qj′

do not belong to
the same set, for any j 6= j′ according to Πq.

P

{
X1:q1,...,1:qJ ∈

J

×
j=1

A
qj
j

}
= P

{
(X1:q1,...,1:qJ ∈

J

×
j=1

A
qj
j ) ∩ (Πq ∈Aq1,...,qJ )

}
=

=P (Πq ∈Aq1,...,qJ )P

{
X1:q1,...,1:qJ ∈

J

×
j=1

A
qj
j | Πq ∈Aq1,...,qJ

}
=

=

q1∑
s1=1

· · ·
qJ∑
sJ=1

P(Πq ∈Aq1,...,qJ ,K
(1)
q1 = s1, . . . ,K

(J)
qJ

= sJ)×

× P

{
X1:q1,...,1:qJ ∈

J

×
j=1

A
qj
j | Πq ∈Aq1,...,qJ ,K

(1)
q1 = s1, . . . ,K

(J)
qJ

= sJ

}
=
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=

q1∑
s1=1

· · ·
qJ∑
sJ=1

H(A1)s1 · · ·H(AJ)sJ×

× P(Πq ∈Aq1,...,qJ ,K
(1)
q1 = s1, . . . ,K

(J)
qJ

= sJ)

=E
[
H(A1)K

(1)
q1 · · ·H(AJ)K

(J)
qJ | Πq ∈Aq1,...,qJ

]
P(Πq ∈Aq1,...,qJ )

2.4.3 Characterization of multivariate species sampling processes

Finally, in the next theorem we provide a characterization of observable in terms of random
probabilities and vice versa. We show that in the series representation of mSSP there is a
latent infinite set of i.i.d. atoms shared across all the marginal SSP, while the partition law
is controlled by the weights. Thus, at least conceptually, mSSP are strongly connected with
common atoms dependent nonparametric processes (MacEachern, 1999, 2000; Quintana
et al., 2020).

Theorem 2.5. X ∼ mSSM if and only if

p̃j
a.s.
=
∑
h≥1

πj,hδθh +

1−
∑
h≥1

πj,h

 H, for j = 1, . . . , J,

where θh are i.i.d from H and independent from π = (πj,h)j,h.

Proof. To prove the if part of the theorem, note that conditionally on p̃1, X(j1)
1 is either equal

to some θh or sampled from H . However, since θh are i.i.d from H , marginally

X
(j1)
1 ∼ H.

To compute the distribution of X(jn+1)
n+1 givenX1:n, let us choose any arbitrary order for the

variables in (θh)h≥1 and introduce two sequences of auxiliary random variables: {ci : i =

1, . . . , n+ 1}, such that

ci =

{
h iff X(ji)

i = θh

0 iff X(ji)
i 6= θh for any h

and {φi : i = 1, . . . , n+1}, such that φi
iid∼ H with φi independent from (θh)h≥1 and (πj,h)j,h.

So, one have that

X
(ji)
i | (θh)h≥1, ci, φi

ind∼ 1{ci≥1} δθci + 1{ci=0} δφi .

Moreover denote with c∗l , for l = 1, . . . ,K, the unique values of ci in order of appearance
of the observable.
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Thus,

P
(
X

(jn+1)
n+1 ∈ A |X1:n

)
=
∑
h≥0

P
(
X

(jn+1)
n+1 ∈ A | cn+1 = h,X1:n

)
P(cn+1 = h |X1:n)

=
∑
h≥1

P (θh ∈ A | cn+1 = h,X1:n) P(cn+1 = h |X1:n)+

+ P (φn+1 ∈ A | cn+1 = 0,X1:n) P(cn+1 = 0 |X1:n)

using the notation c1:n = {ci : i = 1 . . . n}, we have

P (θh ∈ A | cn+1 = h,X1:n) = E [P (θh ∈ A | c1:n, cn+1 = h,X1:n) | cn+1 = h,X1:n]

where

P (θh ∈ A | c1:n, cn+1 = h,X1:n) =

{
H(A) if h 6= c∗l ∀l
1{X∗l ∈A} if h = c∗l

computing the expected value

P (θh ∈ A | cn+1 = h,X1:n) =H(A)P(h 6= c∗l | cn+1 = h,X1:n)

+
K∑
l=1

1{X∗l ∈A} P(h = c∗l | cn+1 = h,X1:n)

=H(A)P(cn+1 6= c∗l | cn+1 = h,X1:n)

+

K∑
l=1

1{X∗l ∈A} P(cn+1 = c∗l | cn+1 = h,X1:n)

Putting everything together we have

P
(
X

(jn+1)
n+1 ∈ A |X1:n

)
= H(A)P(cn+1 6= c∗l |X1:n)

+

K∑
l=1

1{X∗l ∈A} P(cn+1 = c∗l |X1:n)

Finally, note that (by hypothesis and de Finetti’s theorem) we have that X is partially
exchangeable. Thus, by Theorem 2.1, the random partition Π, define by the equivalence
relation i ∼ i′ iff X(ji)

i = X
(j′i)
i′ , is partially exchangeable with respect to D. Moreover, by

Thereom 2.2, we know that the partial exchangeability of Π is a necessary and sufficient
condition to prove that the functions P(cn+1 = c∗l | X1:n) are mPPF according to Defini-
tion 2.8.

To prove the only if part, recall that by Proposition 2.4 we have that Xj is marginally a
species sampling model (SSM) and thus by Pitman (1996) there exists a species sampling
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process

p̃j
a.s.
=
∑
h≥1

π̃j,hδθ̃j,h +

(
1−

∑
h≥1

π̃j,h

)
Hj ,

where θ̃j,h
iid∼ Hj , such that X(ji)

i | p̃ji
ind∼ p̃ji , for i ≥ 1. Note that, by definition of SSP,

marginally X(ji)
i ∼ Hji and, by Definition 2.7 of mSSM, X(ji)

i ∼ H , for every i ≥ 1. There-

fore Hj = H for j = 1, . . . , J . Thus for any fixed j ∈ [J ], θ̃j,h
iid∼ H , for h ≥ 1. Provided

these marginal laws for p̃j , for j ∈ [J ], we have to derive the joint law of (p̃1, . . . , p̃J). More
precisely, we are interested just in the joint law of the random atoms. Note that given
X

(ji)
i 6= X

(j′i)
i′ , X(ji)

i and X(j′i)
i′ are independent. This implies that given θ̃j,h 6= θ̃j′,h′ , θ̃j,h and

θ̃j′,h′ are independent. However, there can be ties between the unique random atoms θ̃j,h
across different j’s.
Let θ1, θ2, . . . be the unique random atoms across θ̃1,1, . . . , θ̃J,1, θ̃1,2, . . . , θ̃J,2, . . . (in a given
order). Therefore, we can rewrite

p̃j
a.s.
=
∑
h≥1

πj,hθh +

(
1−

∑
h≥1

πj,h

)
H,

where {
πj,h = π̃j,h′ if θh = θ̃j,h′

πj,h = 0 if @ θ̃j,h′ s.t. θh = θ̃j,h′

2.5 Regular mSSP

Theorem 2.5 provides a new definition of mSSP which is

Definition 2.10 (Multivariate species sampling process 2). A vector of random probability
measures (p̃1, . . . , p̃J) is a mSSP if

p̃j
a.s.
=
∑
h≥1

πj,hδθh +

1−
∑
h≥1

πj,h

P0, for j = 1, . . . , J,

where the atoms (θh)h≥1 are i.i.d from the non-atomic distribution P0, the weights π = (πj,h)j,h are
such that P[0 ≤ πj,h ≤ 1] = 1 for any j and h, and atoms and weights are independent. Moreover,
if
∑

h≥1 πj,h
a.s.
= 1, for any j, (p̃1, . . . , p̃J) is said proper.

Definition 2.10 clearly clarifies the link between mSSPs and SSPs (cf. Definition 2.1). In-
deed, starting from it, it is straightforward to prove that each coordinate of a mSSP is
marginally a SSP and that, basically, a mSSP arises when many SSP share the same atoms
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(θh)h≥1. However, it is important to notice that the conditions imposed on the weights π
by Definition 2.10 are very mild. Since the πj,h’s can be almost surely null, the random
probabilities p̃1, . . . , p̃J may actually share just few or even none of the atoms with pos-
itive probability. Even though Definition 2.10 clearly highlights the connection between
SSP and mSSP, it may be convenient to adopt a different notation that allows to distinguish
between those atoms that can actually be shared across different probability measures and
those that are specific to a certain process. This can be done representing each process only
in terms of those weights that are not almost surely null, as done in the following.
Let us start considering a bivariate mSSP (p̃1, p̃2). Definition 2.10 can be equivalently re-
stated writing each measure as

p̃j
a.s.
=

H∑
h=1

π
(1,2)
j,h δθh +

Kj∑
k=1

π
(j)
j,kδηj,k +

1−
H∑
h=1

π
(1,2)
j,h −

Kj∑
k=1

π
(j)
j,k

P0, for j = 1, 2.

where P[π
(·)
j,h > 0] > 0, H and Kj are non-random and have value in {0, 1, . . . ,+∞}, and all

atoms are i.i.d. from P0. We adopt the convention
∑0

h=1 x = 0. Notice that, accordingly to
this notation, θh is now an atom shared with positive probability by p̃1 and p̃2, while ηj,k is
specific to the measure p̃j and cannot be shared. Moreover, each of the two measures can
be written without lost of generality as a mixture of three components, defining

ω
(1,2)
j =

H∑
h=1

π
(1,2)
j,h π̄

(1,2)
j,h =

{
π

(1,2)
j,h /ω

(1,2)
j if ω(1,2)

j > 0

0 if ω(1,2)
j = 0

and

ωj =

Kj∑
k=1

π
(j)
j,k π̄

(j)
j,k =

{
π

(j)
j,k/ωj if ωj > 0

0 if ωj = 0
.

and as shown in the following definition.

Definition 2.11 (Multivariate species sampling model 3). A bivariate vector of random proba-
bility measures (p̃1, p̃2) is said a mSSP if

p̃j
a.s.
= ω

(1,2)
j

H∑
h=1

π̄
(1,2)
j,h δθh + ωj

Kj∑
k=1

π̄
(j)
j,kδηj,k +

(
1− ω(1,2)

j − ωj
)
P0, for j = 1, 2. (2.7)

where all atoms are i.i.d. from P0 and independent from the weights and the weights are such that

• P[π̄
(·)
j,h > 0] > 0, for any j, h,

•
∑H

h=1 π̄
(1,2)
j,h

a.s
=
∑Kj

k=1 π̄
(j)
j,k

a.s
= 1, for any j,

• P[0 ≤ ω(1,2)
j ≤ 1] = P[0 ≤ ωj ≤ 1] = 1.
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Thus, the components of the mixtures are such that the first corresponds to possibly shared
species, the second is a idiosyncratic measure corresponding to almost surely non-shared
species and the last is the improper part of the process. Moreover, we can easily interpret all
the parameters involved: θh is a species shared with positive probability between the two
populations, ω(1,2)

j is the overall frequency of individuals in population j whose species
can be possibly found also in the other population, andH is the number of possibly shared
species.

The equivalence between Definition 2.10 for J = 2 and Definition 2.11 is straightforward.
However, the advantage of Definition 2.11 is twofold. Firstly, we can immediately distin-
guish between shared and non-shared species. Secondly, this representation allows also to
identify a notable subclass of mSSPs, which we name regular and arises imposing a simple
independence condition between the weights associated to non-shared species, as done in
the following definition.

Definition 2.12 (Regular mSSP). A bivariate mSSP (p̃1, p̃2) is said regular if K1 = K2 = 0 or if
the weights π̄(j)

j,k in (2.7) are such that

(
π̄

(1)
1,k

)K1

k=1
⊥
(
π̄

(2)
2,k

)K2

k=2
.

A J-variate mSSP (p̃1, . . . , p̃J), with J > 2, is said regular if (p̃j , p̃k) is a regular mSSP for any
j, k ∈ {1, . . . , J}.

Intuitively, regularity requires that relative frequencies within non-shared species are inde-
pendent across populations, and thus, regularity is considered trivially satisfied also when
there are not non-shared species. Regular mSSP differ from non-regular mSSPs in the fact
that the dependence structure in regular mSSPs admits an outstanding characterization in
terms of correlation between the measures. The same result does not holds true in the gen-
eral class of mSSP, resulting in fundamental differences between regular and non-regular
processes. Secondly, regular mSSP are the subclass which appears to be more of interest
in statistics, since it includes all mSSPs studied and used in Bayesian nonparametrics till
today (e.g. hierarchical processes, nested processes, dependent normalized random mea-
sures, etc.) the peculiarity of regular mSSPs is the fact that within this class, the correlation
completely characterizes the dependence structure between any two processes. In fact, as
shown in next theorem, it is impossible to construct a zero-correlated regular mSSP whose
components are not pairwise independent.

Theorem 2.6. If (p̃1, . . . , p̃J) is a regular mSSP, then

Corr(p̃j(A), p̃k(A)) = 0 iff p̃j ⊥ p̃k,
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Proof. Let us consider the representation of (p̃j , p̃k) as mixtures of three components

p̃j
a.s.
= ω

(j,k)
j

H∑
h=1

π̄
(j,k)
j,h δθh + ωj

Kj∑
l=1

π̄
(j)
j,l δηj,l +

(
1− ω(j,k)

j − ωj
)
P0

and

p̃k
a.s.
= ω

(j,k)
k

H∑
h=1

π̄
(j,k)
k,h δθh + ωk

Kk∑
l=1

π̄
(k)
k,l δηk,l +

(
1− ω(j,k)

k − ωk
)
P0.

then we have that Corr(p̃j(A), p̃k(A)) = 0 iff pr(X1,j = X1,k) = 0 iff ω(j,k)
j

a.s
= ω

(j,k)
k

a.s
= 0.

Thus

p̃j
a.s.
= ωj

Kj∑
l=1

π̄
(j)
j,l δηj,l + (1− ωj)P0

and

p̃k
a.s.
= ωk

Kk∑
l=1

π̄
(k)
k,l δηk,l + (1− ωk)P0.

and therefore p̃j ⊥ p̃k.

Notice however that not all types of regular mSSP can achieve exactly zero correlation. In
particular those which do not have idiosincratic and improper components (i.e. ω(1,2)

1
a.s
=

ω
(1,2)
2 = 1), such as hierarchical constructions, cannot produce zero correlation.

2.6 Inference and marginal algorithm

Proposition 2.10. IfX ∼ mSSM with pEPPF f , then a marginal algorithm can be derived as

X
(jn+1)
n+1 |X1:n =

X∗l w.p. f([n1,1,...,n1,l+1,...,n1,c],n2...,nJ )
f([n1,1,...,n1,l,...,n1,c],n2,...,nJ )

X∗new w.p. f([n1,1,...,n1,l,...,n1,c,1],[n2,0]...,[nJ ,0])
f([n1,1,...,n1,l,...,n1,c],n2,...,nJ )

Notice that, by Theorem 2.2, we know that

pj,l(n) =
f(nlj+)

f(n)
∀n, l = 1, . . . ,K + 1 and j = 1, . . . , J.

Therefore the same algorithm can be expressed using mPPF instead of ratios of pEPPF.
From this result, it is straightforward to generalized also the well known algorithms for
Dirichlet process mixture model as those in Neal (2000). However, in order to simplify
the ratio and have analytical simple results and computationally efficient samplers from
Proposition 2.10 is often necessary to introduce some data augmentation to recover product
form (e.g. composition of Gibbs type priors).
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2.6.1 Probability of a new species

One of the crucial aspects typically considered to choose across different (univariate) SSP is
the probability of observing a new species for Xn+1 not included in the sample X1, . . . , Xn

already observed (see, for instance, De Blasi et al., 2015). Extending the same approach
to the multivariate case, we compare here the probability of observing a new species in
a certain population which is not included in a sample already observed from a different
population. For sake of simplicity, consider the case of a bivariate mSSP (p̃1, p̃2) and the

usual sampling procedure Xi,j | (p̃1, p̃2)
iid∼ pj , the quantity of interest is

P[X2,1 is “new” | X1,1, . . . , X1,n].

Notice that if, as it usually happens, p̃1
d
= p̃2, then the probability coincides with P[X1,1 is “new” |

X2,1, . . . , X2,n]. We conclude this chapters with the following examples, where we provide
the probability of a new species for some of the most famous mSSP.

Example 2.5 (Continue). If (p̃1, . . . , p̃J) is distributed accordingly to a HDP, then

P[X2,1 is “new” | X1,1, . . . , X1,n] =
∑
l

α0

α0 + |l|
p(l | X1,1, . . . , X1,n),= fHDP

(
n, K

(1)
1:n,n

)

where the sum runs over all l = (l1, . . . , lK(1)
1:n

), such that lh ∈ {1, . . . , nh}, where K(1)
1:n is the num-

ber of distinct species observed in X1,1, . . . , X1,n and nh is the number of subjects corresponding to
the h-th specie in order of appearance. Using the Chinese Franchise metaphor, lh is the number of
tables in the first restaurant serving the h-th dish. Therefore

p(l | X1,1, . . . , X1,n) ∝ α
K

(1)
1:n

0 α|l|

(α0)|l|

K
(1)
1:n∏

h=1

(lh − 1)!

(α)nh
|s(nh, lh)|1{1,...,nh}(lh)

where |s(n, k)| are the signless Stirling numbers of the first kind and (x)n is a Pochhammer symbol
representing the rising factorial (cf. Camerlenghi et al., 2018, 2019b).
If (p̃1, . . . , p̃J) is distributed accordingly to a HPY, then

P[X2,1 is “new” | X1,1, . . . , X1,n] =
∑
l

α0 +K
(1)
1:nσ0

α0 + |l|
p(l | X1,1, . . . , X1,n) = fHPY

(
n, K

(1)
1:n,n

)
where

p(l | X1,1, . . . , X1,n) ∝
∏|l|−1
t=1 (α+ t σ)

(α0 + 1)|l|−1

K
(1)
1:n∏

h=1

C(nh, lh;σ)

σlh
(1− σ0)lh−11{1,...,nh}(lh)

where C(n, k;σ) = 1
k!

∑k
i=0(−1)i

(
k
i

)
(−iσ)n is the generalized factorial coefficient (cf. Camerlenghi
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et al., 2018, 2019b).

Example 2.6 (Continue). If (p̃1, . . . , p̃J) is distributed accordingly to a NDP, then

P[X2,1 is “new” | X1,1, . . . , X1,n] =
θ0

θ0 + 1
+

θ

(θ0 + 1)(θ + n)
= fNDP (n, n)

Example 2.7 (Continue). If (p̃1, p̃2) is distributed accordingly to a GM-DP, then

P[X2,1 is “new” | X1,1, . . . , X1,n] = fGM

(
n, K

(1)
1:n,n

)
The following figure represents the expected value of fGM

(
n, K

(1)
1:n,n

)
, as function of n.
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Chapter 3

Dependent Processes with Full-Range
Borrowing of Information

One of the results in the previous chapter is that correlation across observations extracted
from different populations (which, for brevity, we also call correlation across samples) is non-
negative within the class of mSSM. However, as we show in this third chapter, such condi-
tion is not implied by the assumption of partial exchangeability of the observables. More-
over, it is important to stress that the correlation across groups is a key ingredient in the
definition of the Bayesian learning mechanism induced by any model for partial exchange-
able data and, in particular, it controls how borrowing of information across samples is
performed. Thus, controlling and quantifying the correlation across samples and its sign
should not be regarded as secondary aspects while developing a model.

In this chapter, we extend the study of the correlation also to those existing dependent
priors that do not belong to the class of mSSMs, finding that no existing model permits
to effectively control the borrowing of information across samples. Therefore, we define
a new dependent process that we called NRMI with full-range borrowing of information (n-
FuRBI) and through which it is possible to freely control the correlation across samples.

The structure of the chapter is the following. The next two sections clarify the framework,
the main goals, and some aspects connected to the idea of borrowing of information. Sec-
tion 3.3 provides general results for dependent processes and an extensive discussion over
the correlation induced by these models. Section 3.4 and 3.5 define n-FuRBI, together with
their main a-priori properties and the induced correlation structure. Section 3.6 illustrates
in depth a posterior characterization of n-FuRBI, with a focus on the predictive distribu-
tions. In Section 3.7 we provide MCMC algorithms to derive posterior inference. The
chapter concludes with Section 3.8 where detailed applications on simulated and real data
can be found.
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3.1 Overview and main goals

Consider two sequences of observations X = (Xi)i≥1 and Y = (Yj)j≥1, we recall that
they are said to be partially exchangeable if and only if, for all sample sizes (n1, n2) and all
permutations (π1, π2), it holds(

(Xi)
n1
i=1, (Yj)

n2
j=1

) d
=
(
(Xπ1(i))

n1
i=1, (Yπ2(j))

n2
j=1

)
.

In the following, we are referring to X1:n1 = (Xi)
n1
i=1 and Y1:n2 = (Yj)

n2
j=1 for finite n1 and

n2 with the term samples. Moreover, de Finetti representation theorem for partial exchange-
ability (see Section 1.4) states that X and Y are partially exchangeable if and only if there
exist two random probability measures p̃1 and p̃2 such that

Xi | p̃1
iid∼ p̃1 for i = 1, . . . , n1

Yj | p̃2
iid∼ p̃2 for j = 1, . . . , n2

(p̃1, p̃2) ∼ Q

(3.1)

In Section 1.4 we reviewed many existing proposal for the dependent prior Q in (3.1),
which we have divided mainly in two classes: prior based on the series representation
of the underlying probability measures and prior based on CRMs. However, regardless of
the specific definition, when choosing among these priors we should be interested in the
dependence induced at the level of the observables. In this regard, it is useful to notice that
within partial exchangeability observations in different groups cannot be more correlated
(in absolute sense) that the ones in the same group.

Lemma 3.1. Consider two partially exchangeable sequences X and Y , such that p̃1 and p̃2 in
equation (3.1) have the same marginal distribution. Then

−Corr(Xi, Xi′) ≤ Corr(Xi, Yj) ≤ Corr(Xi, Xi′),

for any i, i′ and j.

Proof. Recall that (Xi, Yj) | p̃1, p̃2
iid∼ p̃1 × p̃2 and notice that

Cov(Xi, Yj) = E[Cov(Xi, Yj | p̃1, p̃2)] + Cov(E[Xi | p̃1],E[Yj | p̃2]),

where the first term equal 0, so that

Cov(Xi, Yj) = Cov
(∫

x p̃1(dx),

∫
x p̃2(dx)

)
,
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and analogously

Cov(Xi, Xi′) = Cov
(∫

x p̃1(dx),

∫
x p̃1(dx)

)
= Var

(∫
x p̃1(dx)

)
.

By Cauchy-Schwartz inequality we have that[
Cov

(∫
x p̃1(dx),

∫
x p̃2(dx)

)]2

≤ Var
(∫

x p̃1(dx)

)
Var

(∫
x p̃2(dx)

)
.

Lastly assume that p̃1
d
= p̃2, so that Cauchy-Schwartz inequality becomes

−Var
(∫

x p̃1(dx)

)
≤ Cov

(∫
x p̃1(dx),

∫
x p̃2(dx)

)
≤ Var

(∫
x p̃1(dx)

)
.

Substituting the expression in terms of the observables we get

−Cov(Xi, Xi′) ≤ Cov(Xi, Yj) ≤ Cov(Xi, Xi′),

as desired.

Notice that if observables are actually exchangeable (i.e. the labels of the groups are irrel-
evant), the upper bound is attained and it can be shown to be non negative. Thus, the
closer the correlation is to the lower bound in Lemma 3.1 the farther the model is from
exchangeability.
In exchangeable models, the relationship between the observations is typically driven by
ties between them. The first goal of this chapter is to show that a similar scenario can be
depicted for partially exchangeable models, even outside the class of multivariate species
sampling process (see Chapter 2), as long as p̃1 and p̃2 are marginally SSP. For partial ex-
changeable models, the notion of tie is replaced by the one of hyper-tie. The latter will
be the key object driving the dependence across samples. In particular, in Section 3.3 we
show how to compute the correlation between observations in terms of the probability
of an hyper-tie. Such representation highlights that: for model based on the series rep-
resentation the correlation can rarely be computed, while for models based on CRMs the
correlation may actually be computed but it turns out to be always non-negative. Thus, it
appears that the available literature focused on a subset of possible values for the correla-
tion. Therefore, the second goal of this chapter is to provide a class of priors under which
the correlation can be computed explicitly and can be also negative.
We note that all constructions cited in Section 1.4 require that the random probability mea-
sures in (3.1) can be written as{

p̃1
a.s.
=
∑

k≥1 J̄kδθk

p̃2
a.s.
=
∑

k≥1 W̄kδφk
with θk

i.i.d.∼ P0, φk
i.i.d.∼ P0, (3.2)
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where P0 is a fixed probability distribution on X where the random weights
(
{J̄k}, {W̄k}

)
and the atoms ({θk}, {φk}) are independent, i.e., p̃1 and p̃2 are marginally SSP. Next Lemma
shows that the sign of the correlation depends only on the dependence between the atoms.

Lemma 3.2. Consider two partially exchangeable sequences X and Y , such that the underlying
p̃1 and p̃2 are as in (3.2). Suppose moreover Corr(θk, φk′) ≥ 0 for any choice of k and k′. Then
Corr (Xi, Yj) ≥ 0.

Proof. By definition of covariance we have

Cov(Xi, Yj) = Cov

∑
j≥1

Jjθj ,
∑
k≥1

Wkφk

 =
∑
j≥1

∑
k≥1

Cov (Jjθj ,Wkφk) .

For arbitrary j and k we have

E (JjWkθjφk) = E[JjWk]E[θjφk] ≥ E[JjWk]E[θj ]E[φk],

since Cov(θj , φk) ≥ 0. Denoting c = E[θj ] = E[φk], we get

Cov (Jjθj ,Wkφk) ≥ c2Cov(Jj ,Wk).

Finally, since p̃1 and p̃2 are random probability measures it holds

Cov(Xi, Yj) ≥ c2Cov

∑
j≥1

Jj ,
∑
k≥1

Wk

 = 0,

that concludes the proof.

Therefore, in order to obtain a negative correlation we cannot simply allow sharing of the
atoms between the two groups, that was a popular way of introducing dependence (e.g.
in hierarchical structures); instead, we need a flexible joint distribution for the sequence of
atoms. This task is accomplished by the prior proposed in this chapter, n-FuRBI, that al-
lows to attain any possible value for the correlation specified in Lemma 3.1 and, moreover,
it encompasses many previous cited constructions as special cases. We will show that it
combines the flexibility of the series construction with the analytical tractability derived by
CRMs.

3.2 Borrowing of information

As already mentioned the correlation between observations is useful not only to quantify
the dependence induced by the prior Q, but it connects also to the notion of borrowing of
information. This term was first coined by John Tukey (Brillinger, 2002) and popularized
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in reference to Stein’s paradox and empirical Bayes techniques in Efron & Morris (1977).
More generally, statisticians refer to borrowing of information when many samples con-
tributes to inference related to just one sample. Imagine to collect the data X1:n and Y1:m,
while being actually interested only on the parameter p̃1 in (3.1) associated to X . The sim-
plest approach could be to disregard the second sample, with the disadvantage of losing
possibly useful information. The typical borrowing instead consists in using all the obser-
vations and shrinking the estimates for different samples towards each other, that happens
when the prior induces positive correlation between observations in different samples. A
toy example to clarify this concepts is the following. Let us consider the situation in which
observations coming from two different populations have been collected and we assume
that

Xi | µx
iid∼ N(µx, 1) for i = 1, . . . , n

Yj | µy
iid∼ N(µy, 1) for j = 1, . . . ,m

To obtain a working model, one has to specify a certain prior over µx and µy. The main
well-known strategies we may employ are the following

• Modeling µx and µy as independent, which ultimately means that we do not consider
the information coming from one sample to be relevant for the inference of the other.

• Assuming µx
a.s.
= µy, which is reasonable only if we have strong prior information

regarding the fact that the distribution in the two populations is the same.

• Modeling µx and µy as dependent, assuming positive correlation between them. This
ultimately corresponds to the idea that, if our posterior estimate of µy is higher that
our prior guess than we should increase also our guess about µx.

To clarify the last point, let us compare a typical strategy used to perform borrowing of
information, which is provided by the following prior

µx | µ0 ∼ N(µ0, 1)

µy | µ0 ∼ N(µ0, 1)

µ0 ∼ N(ν, 1)

(3.3)

with the correspondent independent prior, which preserves the same marginals

µx ∼ N(ν, 2) µy ∼ N(ν, 2)

µx ⊥ µy

Let us assume that only the second sample has been observed and we note what happens
to the distribution of µx under the two specifications. Under independence, there is no
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change and thus
p(µx | Y1:m) ≡ N(ν, 2)

while under model (3.3) the new distribution of µx is

p(µx | Y1:m) ∝
+∞∫
−∞

p(µx | µ0)p(µ0 | Y1:m)dµ0 ≡ N
(

1

2m+ 1
ν +

2m

2m+ 1

ν + ȳ

2
, 1 +

m+ 1

2m+ 1

)

where the expected value can be rewritten as

E[µx | Y1:m] = ν +
m

2m+ 1
(ȳ − ν)

Thus, when ȳ > ν the borrowing results in an increase in the expected value of µx, while if
ȳ < ν we will observe a decrease in the expected value of µx.

Finally, imagine that also the first sample has been observed. The point estimates under a
square loss function for µx under independence and model (3.3) are respectively

µ̂x =
n

n+ 1/2
x̄+

1/2

n+ 1/2
ν

µ̂x =
n

n+ 1/2
x̄+

1/2

n+ 1/2

[
ν +

m

2m+ 1
(ȳ − ν)

]
.

The same reasoning holds true if we consider the prediction of X1 given Y1: in the inde-
pendent case we have

p(X1 | Y1) = N(ν, 3)

while, using classical borrowing we have

p(X1 | Y1) = N
(
ν +

1

3
(Y1 − ν), 2 +

2

3

)
However, some applications may still require to use the information in Y1:m to improve
the inference on p̃1 and the prediction of X1, but without such assumption of positive
correlation between X1(µx) and Y1(µy).

Think for example about different investments in financial markets, whose returns are re-
lated, but may exhibit opposite behaviour. Our proposal allows to consider any interest-
ing choice: independence, classical shrinkage, but also repulsion of estimates for different
samples, generating what we call full–range borrowing of information. Finally, notice that the
repulsive behaviour proposed in this chapter is different from the one of the repulsive pri-
ors, introduced in Petralia et al. (2012); Quinlan et al. (2017), that instead consider repulsive
distributions for atoms of the same random probability measure.
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3.3 General results on dependent processes

As stated in Section 3.1, the vast majority of dependent processes introduced in the litera-
ture are almost surely discrete and marginal SSPs, therefore they admit a representation as
in (3.2). Moreover, each atom in p̃1 is independent from all atoms of p̃2 except one, and the
vice versa is true for the atoms of p̃2, i.e. θk ⊥ φh for k 6= h. For all those priors, p̃1 and p̃2

can be seen, without loss of generality, as the projection over different coordinates of other
two processes, namely p1 and p2, such that

p1
a.s.
=
∑
k≥1

J̄kδ(θk,φk), p2
a.s.
=
∑
k≥1

W̄kδ(θk,φk), (θk, φk)
i.i.d.∼ G0, (3.4)

where G0 is a probability distribution on X× X. So that

p̃1(·) = p1(· × X) p̃2(·) = p2(X× ·). (3.5)

In other words, p̃1 and p̃2 are deterministic transformation of p1 and p2, that are random
probability measures on X×X that share the same atoms and have any dependence struc-
ture on the weights. We will also require that the weights are independent of the atoms, as
in all the constructions mentioned in Section 1.4. Notice that in this case p1 and p2 actually
constitute a mSSP (see Chapter 2). Finally, for ease of exposition, we are going to take p̃1

and p̃2 with the same marginal distribution, even if this is not strictly necessary.
Almost sure discreteness implies that a sample from the random probability measure p̃1

(or p̃2) will display ties with positive probability. The probability of a tie, i.e. a coincidence
of any two observations i and j in the same sample, is

β := P[Xi = Xj ] =
∑
k≥1

E[J̄2
k ] =

∑
k≥1

E[W̄ 2
k ] = P[Yi = Yj ] (3.6)

with (J̄k)k≥1 and (W̄k)k≥1 equal in distribution since we are assuming, for simplicity, that
p̃1 and p̃2 are equal in distribution. When considering jointly the two samples, the concept
of tie can be replaced by the one of hyper-tie, that is two observations in different samples
coinciding with components having the same label. According to (3.1), its probability is
given by

γ :=
∑
k≥1

P[Xi = θk, Yj = φk] =
∑
k≥1

E[J̄kW̄k]. (3.7)

Sampling from components with the same label is equivalent to sampling the same atom
at the level of the underlying (p1, p2) in (3.4). Clearly, when the atoms are shared between
p̃1 and p̃2, i.e. G0(dθ,dφ) = P0(dθ)δ{θ}(dφ), as it happens for instance with hierarchical
processes (see Camerlenghi et al., 2019b), a hyper-tie corresponds to an actual tie between
observations in different samples.
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Lemma 3.3. Consider (p̃1, p̃2) as in (3.5). Then 0 ≤ γ ≤ β and β = γ if and only if W̄k
a.s.
= J̄k for

any k.

Proof. Recall that
β := E[J̄2

k ] =
∑
k≥1

E[W̄ 2
k ] γ :=

∑
k≥1

E[J̄kW̄k].

Since
E[J̄kW̄k] ≤

√
E[J̄2

k ]E[W̄ 2
k ] = E[J̄2

k ]

it follows that γ ≤ β. Moreover, the equality holds if and only if J̄k
a.s
= ak + W̄k, for any k,

with ak ∈ R, however the equality of marginal distributions implies ak = 0.

Hyper-ties play a crucial role in measuring the dependence between observables across
groups, as the ties do for the dependence between observables within groups. Indeed,
consider the following specification

Xi | p̃1
i.i.d.∼ p̃1, Yj | p̃2

i.i.d.∼ p̃2, (p̃1, p̃2) ∼ Q, (3.8)

where Q is the law of any process described in (3.5). The next Proposition provides the
correlation between observations, within and across groups.

Proposition 3.1. Let (p̃1, p̃2) be as in (3.5) and consider model (3.8).Then

Corr(Xi, Xi′) = Corr(Yj , Yj′) = β i 6= i′ and j 6= j′

and
Corr(Xi, Yj) = γ ρ0 for all i, j

where ρ0 is the correlation between two random variables jointly sampled from G0.

Proof. As far as the correlation across sequences is concerned, we start by computing the
moments, denoting c = E[θj ] = E[φk],

E[XiYj ] =
∑
j≥1

∑
k≥1

E[J̄jW̄k]E[θjφk] = c2
∑
j 6=k

E[J̄jW̄k] +
∑
k≥1

E[J̄kW̄k]E[θkφk],

and
E[Xi]E[Yj ] = c2

∑
j≥1

∑
k≥1

E[Jj ]E[Wk].

Adding and subtracting c2
∑

k≥1 E[J̄kW̄k] we get

Cov(Xi, Yj) = Cov(θ, φ)
∑
k≥1

E[J̄kW̄k] + c2
∑
j≥1

∑
k≥1

E[J̄jW̄k]− c2
∑
j≥1

∑
k≥1

E[Jj ]E[Wk]

= γ Cov(θ, φ) + c2 − c2,

58



3.3. GENERAL RESULTS ON DEPENDENT PROCESSES

since
∑

j≥1 J̄j =
∑

k≥1 W̄k = 1 almost surely. The result follows noticing that Var(Xi) =

Var(θ) and Var(Yj) = Var(φ).
Correlation within each sequence can be derived as a particular case of the above compu-
tations, with γ = β and ρ0 = 1.

Thus, the correlation between observations in the same sample is the probability of a tie;
instead, correlation between observations from different samples is given by the probability
of a hyper-tie, multiplied by the correlation between atoms. It is clear that the latter can
be negative, suitably choosing the joint distribution of the atoms; negative correlation is
induced when G0 exhibits a repulsive behaviour. Thus, choosing G0 appropriately, for in-
stance as a bivariate normal, it is easy to tune the correlation with the available prior knowl-
edge. The following corollary shows the values that can be attained, once the marginal law
is specified.

Corollary 3.1. Let (p̃1, p̃2) be as in (3.5) and consider model (3.8). If the marginal distribution of
p̃1 and p̃2 is fixed, then

Corr(Xi, Yj) ∈ [−β, β],

and the extreme values are attained if and only if the jumps are equal and ρ0 = ±1.

Proof. It is clear that γ ≥ 0. Then, we need to maximize E[J̄k, W̄k] for any k ≥ 1. Since p̃1

and p̃2 have fixed marginals, it is equivalent to maximize Corr(J̄k, W̄k). It is well-known
that the correlation is the greatest when J̄k

a.s.
= W̄k + c, with fixed c; since they share the

same marginals, J̄k
a.s.
= W̄k and the result follows.

Interestingly, notice that the extreme case of Corr(Xi, Yj) = β is attained with equal weights
and atoms and corresponds to full exchangeability. Null correlation, instead, is attained
when atoms are uncorrelated or when there is probability zero of hyper-ties. Lastly, max-
imum negative correlation Corr(Xi, Yj) = −β, attained with equal weights and perfectly
negatively correlated atoms, can be thought as the opposite case with respect to exchange-
ability, at least in terms of correlation. Ties and hyper-ties play a similar role also in the
predictive structure, as the next Lemma shows.

Lemma 3.4. Let (p̃1, p̃2) be as in (3.2) and consider model (3.8) and let A,B ∈X. Then

P (X1 ∈ A,X2 ∈ B) = βP0(A ∩B) + (1− β)P0(A)P0(B).

and
P (X1 ∈ A, Y1 ∈ B) = γG0(A×B) + (1− γ)P0(A)P0(B).

where P0 is the marginal distribution on X obtained from G0.

Proof. Proof follows trivially, noticing that p1 and p2 form a mSSP (cf. Definition 2.7).
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The result is indeed quite intuitive. If X1 and Y1 form a hyper-tie (with probability γ) they
come from the same pair of atoms and need to be sampled jointly; otherwise they refer
to different atoms and are sampled independently. The same happens inside each group,
where X1 and X2 are equal with probability β.

Example 3.1 (Hierarchical Dirichlet process). The hierarchical Dirichlet process (Teh et al.,
2006) is characterized by the hierarchical representation

p̃i | p̃0
i.i.d.∼ DP(θ, p̃0), p̃0 ∼ DP(θ0, P0),

where P0 is a diffuse measure and DP(α,H) denotes the law of a Dirichlet process with
concentration parameter α > 0 and baseline distribution H . Since the p̃i’s share the atoms,
an hyper-tie corresponds to an actual tie between observations in different samples, so that
with simple computations we get

β = Corr(Xi, Xj) = 1− θθ0

(1 + θ)(1 + θ0)
,

γ = Corr(Xi, Yj) =
1

1 + θ0
.

Thus, the correlation is forced to be positive, with θ0 tuning the dependence; see Example
1 in Camerlenghi et al. (2019b) for more details.

Example 3.2 (Hierarchical Pitman-Yor). If

p̃i | p̃0
i.i.d.∼ PY(σ, θ, p̃0), p̃0 ∼ PY(σ0, θ0, P0),

where P0 is a diffuse measure, the p̃i’s share the entire sequence of atoms and an hyper-tie corre-
sponds to an actual tie between observations in different samples, so that with simple computations
we get

β = Corr(Xi, Xj) = 1− (θ + σ)(θ0 + σ+0)

(1 + θ)(1 + θ0)
,

γ = Corr(Xi, Yj) =
1− σ0

1 + θ0
.

Thus, also in this case the correlation is forced to be positive, with θ0 and σ0 tuning the dependence
across samples.

It should now be clear that it is crucial to suitably set γ in order to tune the level of de-
pendence. However, its knowledge in closed form is restricted to few cases and for general
dependent processes cannot be easily derived. Therefore, it seems we are facing a trade-off.
On the one hand we have dependent processes based on the stick-breaking representation,
that guarantee high flexibility while sacrificing the availability of analytical results; on the
other hand we have constructions based on completely random measures, for which an
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extensive theory has been developed, but that are not as manageable for introducing de-
pendence, since all the existing instances produce non-negative correlation across samples.
In the following we will show how to combine the best of both worlds through the n-FuRBI,
defined in next section: they are flexible processes that can attain any value for the corre-
lation between the observables and for which marginal urn schemes can be derived. Their
construction is based on completely random measures and completely random vectors,
reviewed in Section 1.3 and Section 1.4.1.

3.4 Full range borrowing of information NRMIs

In this section we introduce n-FuRBI, starting from a completely random vector. Again,
for simplicity, we consider only the case of two samples with the same a priori marginal
distribution, however the extension is straightforward.

Definition 3.1. Consider a CRV (µ1, µ2) on (X× X,X ⊗X) with Lévy intensity

v(ds1,ds2,dx1, dx2) = ρ(ds1, ds2)α(dx1,dx2),

where α(dx1,dx2) = θG0(dx1,dx2) andG0 is a non-atomic probability measure over (X×X,X⊗
X) such that G0(· × X) = G0(X× ·) = P0(·). Then µ̃1 and µ̃2 defined as

µ̃1(·) = µ1(X× ·) µ̃2(·) = µ2(· × X) (3.9)

are called FuRBI completely random measures (FuRBI CRMs) with underlying Lévy intensity v.
The normalized versions p̃j(·) =

µ̃j(·)
µ̃j(X) for j = 1, 2 are said n-FuRBIs.

Essentially, firstly a pair of random measures endowed with the same locations is con-
structed on the product space X×X; as a second step, the coordinates of each pair of atoms
are split. Notice that in general FuRBI CRMs are not CRVs, because the joint sampling of
the atoms forbids the independence of increments of the vector. In this regard it may be
useful to underline the difference between FuRBI-CRMs and classical CRVs, exploiting the
difference in the underlying PPs. If µ̃1 and µ̃2 form a CRV, then there exists a PP, N , on
R+ × R+ × X with a certain intensity v(ds1, ds2, dx) such that

µ̃1(dx) =

∫
R+×R+

s1N(ds1,ds2,dx)

and
µ̃2(dx) =

∫
R+×R+

s2N(ds1,ds2,dx).

Instead, if µ̃1 and µ̃2 are FuRBI CRMs, then there exists a PP, N , on R+ × R+ × X× X with
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Figure 3.1: Simulation steps for a bivariate vector of FuRBI CRMs with underlying intensity
v(ds1,ds2,dx) = ρ(ds1, ds2)G0(dx1,dx2). At step 1 arrival times of a PP on R+ × R+ with
intensity ρ(ds1,ds2) are sampled, at step 2 a bivariate atom from G0(dx1,dx2) is sampled
for each couple of jumps, at step 3 the i.i.d. atoms are associated to the couples of jumps.
To get the correspondent NRMIs, it is enough to normalize the two sequences of jumps.

a certain intensity v(ds1,ds2,dx1, dx2) such that

µ̃1(dx) =

∫
R+×R+×X

s1N(ds1,ds2,dx,dx2)

and
µ̃2(dx) =

∫
R+×R+×X

s2N(ds1,ds2,dx1,dx).

Figure 3.1 displays the sampling steps to generate FuRBI CRMs starting from the Poisson
process, if compared to Figure 1.2 it highlights that the main difference between the two
constructions lies in the dimension of the atoms to be sampled. Finally, looking at the series
representations of CRMs in Theorem 1.8, we have that the dependence between FuRBI-
CRMs is driven both by the dependence between the weights encoded by ρ(ds1,ds2) and
by the dependence of the atoms encoded by G0, as shown in the next proposition.

Proposition 3.2. Let µ̃1 and µ̃2 be FuRBI CRMs as defined in Definition 3.1, then ∀A,B ∈X,

Cov(µ̃1(A), µ̃2(B)) = Cov (µ̃1(X), µ̃2(X)) P0(A)P0(B)+

+
∑
k≥1

E[JkWk] (G0(A×B)− P0(A)P0(B))
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Proof.

E[µ̃1(A) µ̃2(B)] =E

∑
k≥1

Jkδθk(A)
∑
k′≥1

Wk′δφk′ (B)

 =
∑
k≥1

∑
k′≥1

E[JkWk′δθk(A)δφk′ (B)]

Moreover, by the homogeneity of the two CRMs, we have

E[µ̃1(A) µ̃2(B)] =
∑
k≥1

∑
k′≥1

E[JkWk′ ]E[δθk(A)δφk′ (B)]

=
∑
k≥1

∑
k′≥1

E[JkWk′ ]
(
G0(A×B)1{k=k′} + P0(A)Q0(B)1{k 6=k′}

)
While the product between the marginal first moments is

E[µ̃1(A)]E[µ̃2(B)] =
∑
k≥1

E[Jk]E[δθk ]
∑
k′≥1

E[Wk′ ]E[δφk′ ]

=
∑
k≥1

∑
k′≥1

E[Jk]E[Wk′ ]P0(A)Q0(B)

Therefore,

Cov[µ̃1(A), µ̃2(B)] =
∑
k≥1

E[JkWk]G0(A×B)−
∑
k≥1

E[Jk]E[Wk]P0(A)Q0(B)

+
∑
k≥1

∑
k′ 6=k

E[JkWk′ ]P0(A)Q0(B)−
∑
k≥1

∑
k′ 6=k

E[Jk]E[Wk′ ]P0(A)Q0(B)

Notice now that

Cov

∑
k≥1

Jk,
∑
k′≥1

Wk′

 =
∑
k≥1

∑
k′≥1

Cov(Jk,Wk′)

=
∑
k≥1

Cov(Jk,Wk) +
∑
k≥1

∑
k′ 6=k

Cov(Jk,Wk′)

Therefore we have

Cov[µ̃1(A), µ̃2(B)] =
∑
k≥1

E[JkWk]G0(A×B)−
∑
k≥1

E[Jk]E[Wk]P0(A)Q0(B)

+ P0(A)Q0(B)

Cov

∑
k≥1

Jk,
∑
k′≥1

Wk′

−∑
k≥1

Cov(Jk,Wk)


= Cov

∑
k≥1

Jk,
∑
k′≥1

Wk′

P0(A)Q0(B) +
∑
k≥1

E[JkWk] (G0(A×B)− P0(A)Q0(B))
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The theorem shows that the covariance between two FuRBI CRMs µ̃1 and µ̃2 when eval-
uated on some Borel set A ∈ X is given by the sum of a first term that depends on the
covariance between µ̃1(X) and µ̃2(X) and a second terms that depends on the difference
G0(A × A) − P0(A)P0(A). If the atoms are independent so that G0(A × A) = P0(A)2, the
covariance simplifies to

Cov(µ̃1(A), µ̃2(A)) = Cov (µ̃1(X), µ̃2(X)) P0(A)2.

While FuRBI CRMs do not form a CRV, they admit a representation in terms of a CRV in
the product space, namely (µ1, µ2) in Definition 3.1, and this is useful to characterize the
joint law of the FuRBI CRMs, as shown in the following Proposition.

Proposition 3.3. Consider a vector of FuRBI CRMs (µ̃1, µ̃2). Then

• Both µ̃1 and µ̃2 are CRMs with ρ(ds) =
∫
R+
ρ(ds1,ds) and intensity v(ds, dx) = ρ(ds)θP0(dx).

• For any A,B ∈X, the following equality holds

E
[
e−λ1µ̃1(A)−λ2µ̃2(B)

]
=

= exp {−G0(A×Bc)ψ(λ1)−G0(Ac ×B)ψ(λ2)−G0(A×B)ψb(λ1, λ2)} ,
(3.10)

where ψ denotes the common marginal Laplace exponent and ψb the joint Laplace exponent
of (µ1, µ2).

• The joint law of (µ̃1, µ̃2) is characterized by the joint Lévy intensity of (µ1, µ2).

Proof. The first point follows from the Lévy-Khintchine representation for a CRV. As re-
gards the second point, we have

E [exp{−λ1µ̃1(A)− λ2µ̃2(B)}] =E [exp{−λ1µ1(A× X)− λ2µ2(X×B)}]
=E

[
exp{−λ1µ1(A×Bc)− λ1µ1(A×B)

− λ2µ2(Ac ×B)− λ2µ2(A×B)}
] (3.11)

By independence of the increments, we have µ1(C) independent from µ2(D), with C∩D =

∅, so the right hand side reads

E
[
exp{−λ1µ̃1(A)− λ2µ̃2(B)}

]
= E [exp{−λ1µ1(A×Bc)}]E [exp{−λ2µ2(Ac ×B)}]

× E [exp{−λ1µ1(A×B)− λ2µ2(A×B)}]
(3.12)

Moving to the normalized measures, notice that the n-FuRBIs (p̃1, p̃2) admit a representa-
tion as in (3.2) and (3.4). Next Proposition shows that the β and γ associated to any couple
of n-FuRBI can be computed through their Laplace exponents.
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Proposition 3.4. Consider (p̃1, p̃2) n-FuRBI. Then the probability of a tie is given by

β = −
∫
R+

u

{
d2

du2
ψ(u)

}
e−ψ(u) du,

while the probability of a hyper-tie reads

γ = −
∫
R2
+

{
∂2

∂u1∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1du2.

In order to compute the probability of a hyper-tie and prove Proposition 3.4, we will show

P (X ∈ A, Y ∈ B) = P0(A)P0(B) (1− δ) +G0(A×B)δ,

with A,B ∈X2 and

δ := −
∫
R2
+

{
∂2

∂u1∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1du2.

If follows then that the probability of a hyper-tie will be given exactly by δ, which coincides
with γ. We start with three technical Lemmas.

Lemma 3.5. It holds∫
R2
+

{
∂

∂u1
ψb(u1, u2)

}{
∂

∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1du2 = 1− δ. (3.13)

Proof. Integrating by parts∫ ∞
0

{
∂

∂u1
ψb(u1, u2)

}{
∂

∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1 =

= −
∫ ∞

0

{
∂

∂u2
ψb(u1, u2)

}{
∂

∂u1
e−ψb(u1,u2)

}
du1 =

=

[[
−
{

∂

∂u2
ψb(u1, u2)

}
e−ψb(u1,u2)

]∞
0

+

∫ ∞
0

{
∂2

∂u1∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1

]
=

=

[{
∂

∂u2
ψb(0, u2)

}
e−ψb(0,u2) +

∫ ∞
0

{
∂2

∂u1∂u2
ψb(u1, u2)

}
e−ψb(u1,u2) du1

]
.

(3.14)
Notice ∫ ∞

0

{
d

du2
ψb(0, u2)

}
e−ψb(0,u2) du2 = 1, (3.15)

by the Fundamental Theorem of Calculus. Thus the result follows immediately.
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Lemma 3.6. Let C ∈X2. Then∫
R2
+

E
[
e−u1µ1(X×X)−u2µ2(X×X)µ1(C)µ2(C)

]
du1du2 = G0(C)2 (1− δ) +G0(C)δ (3.16)

Proof. By independence of the increments it follows∫
R2
+

E
[
e−u1µ1(X×X)−u2µ2(X×X)µ1(C)µ2(C)

]
du1du2 =

∫
R2
+

E
[
e−u1µ1(C)−u2µ2(C)−u1µ1(Cc)−u2µ2(Cc)

µ1(C)µ2(C)
]

du1du2 =

∫
R2
+

E
[
e−u1µ1(C)−u2µ2(C)µ1(C)µ2(C)

]
E
[
e−u1µ1(Cc)−u2µ2(Cc)

]
du1du2 =

=

∫
R2
+

E
[
∂

∂u1

∂

∂u2
e−u1µ1(C)−u2µ2(C)

]
E
[
e−u1µ1(Cc)−u2µ2(Cc)

]
du1du2 =

=

∫
R2
+

∂

∂u1

∂

∂u2

{
E
[
e−u1µ1(C)−u2µ2(C)

]}
E
[
e−u1µ1(Cc)−u2µ2(Cc)

]
du1du2 =

=

∫
R2
+

∂

∂u1

∂

∂u2

{
e−G0(C)ψb(u1,u2)

}
e−G0(Cc)ψb(u1,u2) du1du2 =

=

∫
R2
+

∂

∂u1

{
−G0(C)

∂

∂u2
ψb(u1, u2)e−G0(C)ψb(u1,u2)

}
e−G0(Cc)ψb(u1,u2) du1du2 =

=

∫
R2
+

(
G0(C)2 ∂

∂u1
ψb(u1, u2)

∂

∂u2
ψb(u1, u2)

)
e−G0(C)ψb(u1,u2)e−G0(Cc)ψb(u1,u2) du1du2+

+

∫
R2
+

(
−G0(C)

∂

∂u1∂u2
ψb(u1, u2)

)
e−G0(C)ψb(u1,u2)e−G0(Cc)ψb(u1,u2) du1du2 =

=

∫
R2
+

(
G0(C)2 ∂

∂u1
ψb(u1, u2)

∂

∂u2
ψb(u1, u2)

)
e−ψb(u1,u2) du1du2+

+

∫
R2
+

(
−G0(C)

∂

∂u1∂u2
ψb(u1, u2)

)
eψb(u1,u2) du1du2

By Lemma 3.5 it follows∫
R2
+

E
[
e−u1µ1(X×X)−u2µ2(X×X)µ1(C)µ2(C)

]
du1du2 = G0(C)2 (1− δ) +G0(C)δ

Lemma 3.7. Let C,D ∈X such that C ∩D = ∅. Then∫
R2
+

E
[
e−u1µ1(X×X)−u2µ2(X×X)µ1(C)µ2(D)

]
du1du2 =

= G0(C)G0(D) (1− δ)
(3.17)
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Proof. Denote Y = (C ∪D)c. Since C and D are disjoint, by independence of increments it
holds∫

R2
+

E
[
e−u1µ1(X×X)−u2µ2(X×X)µ1(C)µ2(D)

]
du1du2 =∫

R2
+

E
[
e−u1µ1(C∪D)−u2µ2(C∪D)µ1(C)µ2(D)

]
E
[
e−u1µ1(Y )−u2µ2(Y )

]
du1du2 =∫

R2
+

E
[
e−u1µ1(C)−u2µ2(C)µ1(C)

]
E
[
e−u1µ1(D)−u2µ2(D)µ2(D)

]
×

× E
[
e−u1µ1(Y )−u2µ2(Y )

]
du1du2 =∫

R2
+

∂

∂u1

{
e−G0(C)ψb(u1,u2)

} ∂

∂u2

{
e−G0(D)ψb(u1,u2)

}
×

× e−G0(Y )ψb(u1,u2) du1du2 =

G0(C)G0(D)

∫
R2
+

(
∂

∂u1
ψb(u1, u2)

∂

∂u2
ψb(u1, u2)

)
e−ψb(u1,u2) du1du2

(3.18)

Then apply Lemma 3.5.

Finally we can derive the proof of Proposition 3.4.

Proof of Proposition 3.4. Let A,B ∈X2, then we have

P (X ∈ A, Y ∈ B) = E
[
µ̃1(A)

µ̃1(X)

µ̃2(B)

µ̃2(X)

]
= E

[
µ1(A× X)

µ1(X× X)

µ2(X×B)

µ2(X× X)

]
=

=

∫
R2
+

E
[
e−u1µ1(X×X)−u2µ2(X×X)µ1(A× X)µ2(X×B)

]
du1du2 =

=

∫
R2
+

E
[
e−u1µ1(X×X)−u2µ2(X×X)

[
µ1(A×B)µ2(A×B)+

µ1(A×B)µ2(Ac ×B) + µ1(A×Bc)µ2(A×B)+

µ1(A×Bc)µ2(Ac ×B)
]]

du1du2

(3.19)

We compute each integral separately applying Lemmas 3.6 and 3.7 and we get

P (X ∈ A, Y ∈ B) = G0(A× X)G0(X×B) (1− δ) +G0(A×B)δ

= P0(A)P0(B) (1− δ) +G0(A×B)δ,
(3.20)

as desired. Then the probability of a tie in the product space is given exactly by δ, which
equals γ. The probability of a tie is given by the particular case ψb(u1, u2) = ψ(u1 + u2),
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since

−
∫
R2
+

{
∂2

∂u1∂u2
ψb(u1 + u2)

}
e−ψb(u1+u2) du1du2 = −

∫ ∞
0

∫ u

0
dv

{
∂2

∂u2
ψb(u)

}
e−ψb(u) du,

with the change of variables u = u1 + u2 and v = u1.

Thus, the crucial value of γ can be obtained by computing, analytically or numerically, a
bivariate integral. The two results above show a recurrent trait of our approach: interesting
quantities will be usually rewritten in terms of the original CRV, in order to exploit its
analytical tractability. We conclude this section with two examples of FuRBI CRMs, that
also show how some existing constructions can be obtained as special cases.

Example 3.3 (FuRBI CRMs with equal jumps). Consider the underlying Lévy intensity

v(ds1, ds2, dx1,dx2) = ρ(ds1)δs1(ds2) θ G0(dx1,dx2).

The series representation of the corresponding FuRBI CRMs is

µ̃1
a.s.
=
∑
k≥1

Wkδθk µ̃2
a.s.
=
∑
k≥1

Wkδφk with (θk, φk)
i.i.d∼ G0.

Therefore, γ = β, that is the probability of a tie or a hyper-tie is the same.

Example 3.4 (Extended Compound FuRBI CRMs). Consider the joint underlying Lévy inten-
sity

v(ds1, ds2, dx1,dx2) =

∫
z−2h(s1/z, s2/z) ds1ds2v

∗(dz) θ G0(dx1, dx2),

where h is a mass probability function or density function and v∗ is a Lévy intensity that satisfies∫
z−2

∫
min{1, ||s||}h(s1/z, s2/z) ds1ds2v

∗(dz), ||s|| =
√
s2

1 + s2
2.

The series representation of the corresponding FuRBI CRMs is

µ̃1
a.s.
=
∑
k≥1

m1,kWkδθk µ̃2
a.s.
=
∑
k≥1

m2,kWkδφk with (θk, φk)
i.i.d∼ G0,

where (m1,k,m2,k)
iid∼ h. Notice that when G0 is degenerate on the main diagonal, one retrieves

compound random measure of Griffin & Leisen (2017).

3.4.1 Correlation structure between n-FuRBI

In order to analyze the dependence between p̃1 and p̃2 n-FuRBIs, it can be useful to compute
the correlation of the random probability measures evaluated on the same Borel set A.
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This quantity is of significant interest in the literature, since in all the existing CRM-based
models it does not depend on the specific set considered (cf. Proposition 2.7); therefore it
is sometimes used as a global measure of dependence. The next proposition illustrates the
covariance structure between two n-FuRBIs.

Proposition 3.5. Let p̃1 and p̃2 be n-FuRBI. Then ∀A,B ∈X it holds

Cov(p̃1(A), p̃2(B)) = γ [G0(A×B)− P0(A)P0(B)]

and
Corr(p̃1(A), p̃2(B)) =

γ

β

G0(A×B)− P0(A)P0(B)√
P0(A)(1− P0(A))P0(B)(1− P0(B))

.

In the particular case of A = B we have

Cov(p̃1(A), p̃2(A)) = γ
[
G0(A×A)− P0(A)2

]
,

Corr(p̃1(A), p̃2(A)) =
γ

β

G0(A×A)− P0(A)2

P0(A)(1− P0(A))
.

Proof. Let A,B ∈X2. By de Finetti’s Theorem we know

E [p̃1(A)p̃2(B)] = P (X ∈ A, Y ∈ B) ,

and by (3.20) we have

E [p̃1(A)p̃2(B)] = G0(A× X)G0(X×B) (1− γ) +G0(A×B)γ (3.21)

Finally

Cov (p̃1(A), p̃2(B)) = G0(A× X)G0(X×B) (1− γ) +G0(A×B)γ −G0(A× X)G0(X×B)

=γ [G0(A×B)−G0(A× X)G0(X×B)] .
(3.22)

The correlation follows dividing by the product of the standard deviations, that can be
obtained by the above formula since

Var (p̃1(A)) = Cov (p̃1(A), p̃1(A)) = β
[
P0(A)− P0(A)2

]
= βP0(A) [1− P0(A)] ,

as desired.

Unlike what usually happens with existing models, the correlation between p̃1(A) and
p̃2(A) can be negative and this happens when A is such that G0(A × A) < P0(A)2, that is
when G0 exhibits a repulsive behaviour. Moreover, the correlation depends on the specific
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Borel set on which the two measures are evaluated and, therefore, it has to be interpreted
as a local measure of dependence.

Example 3.5 (n-FuRBI with equal jumps). In this case we showed that β = γ. Therefore

Corr (p̃1(A), p̃2(A)) =
G0(A×A)− P0(A)2

P0(A)(1− P0(A))
. (3.23)

Moreover, thanks to Lemma 3.3, once the joint law G0 is fixed this is the highest possible correlation
in absolute value.

As regards the correlation between the observables, that may be seen as more influential
from a modelling perspective, the result of Proposition 3.1 holds.

Example 3.6 (Gamma n-FuRBI with equal jumps). It is the most general framework in terms
of correlation: once the marginal law is fixed, any value in [−β, β] can be attained. If the common
marginal is given by a Dirichlet process, it reads

Corr(Xi, Yj) =
ρ0

1 + θ
.

Choosing appropriately ρ0 and θ the entire spectrum (−1, 1) becomes available.

3.5 σ-stable n-FuRBI

In this section we provide some details on the specific example of n-FURBIs with σ-stable
marginals and underlying Lévy intensity obtained using Clayton’s Lévy copula (see As-
colani et al., 2021).

Definition 3.2. Consider a completely random vector (µ1, µ2) on (X × X,X ⊗ X) with Lévy
intensity v(ds1,ds2,dx1, dx2) = ρ(s1, s2)ds1ds2 α(dx1, dx2) such that

+∞∫
0

ρ(s1, s)ds1 =

+∞∫
0

ρ(s, s2)ds2 =
σ

Γ(1− σ)
s−1−σds α(dx1, dx2), 0 < σ < 1,

µ̃1(·) = µ1(· × X) and µ̃2(·) = µ2(X × ·) are called σ-stable FuRBI CRMs with underlying Lévy
intensity v. The random probability measures p̃1 and p̃2 obtained normalizing two σ-stable FuRBI
CRMs are called σ-stable n-FuRBIs.

In order to obtain a working model which makes use of σ-stable n-FuRBIs, the underlying
Lévy intensity v has to be specified. A useful strategy to do so is to use Lévy copulas. See
Section 1.4.1. A popular Lévy copula is Clayton’s one, which is given by

Cθ(x1, x2) = {x−θ1 + x−θ2 }
−1/θ
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The attractive feature of Clayton’s copula is that it depends only on one parameter, θ, that
fully characterizes the degree of dependence between the resulting CRMs µ1 and µ2. As
consequence, when Clayton’s copula is used to specify the law of two n-FuRBIs, θ con-
trols the portion of dependence between p̃1 and p̃2 induced by the joint distribution of the
weights. In particular when θ → 0 independence between p̃1 and p̃2 is approached, while
the case of θ → +∞ corresponds to maximal dependence induced by the weights, i.e., the
two sequences of weights are equal with probability 1. Applying Clayton’s Lévy copula
to marginal Lévy σ-stables, one gets the following joint Lévy intensity (see Epifani & Lijoi,
2010)

v(ds1,ds2,dx1,dx2; θ) =
(1 + θ)σ (s1 s2)σθ−1

Γ(1− σ) (sσθ1 + sσθ2 )
1
θ

+2
α(dx1,dx2) (3.24)

Theorem 3.1. Consider the sampling model Xi,j | p̃j
ind∼ p̃j for j = 1, 2 and i = 1, . . . , nj , where

p̃1 and p̃2 are n-FuRBIs with underlying joint Lévy intensity provided by (3.24) and denote with ρ0

the correlation between two random variables jointly sampled from G0, then

Corr(Xi,1, Xi′,2) = g(θ) ρ0

where g : R+ → (0, (1− σ)).

Proof. The theorem follows by Proposition 3.1.

Therefore, for appropriate choices of G0, and in particular of ρ0, the correlation between
observations in different samples can be negative.

3.5.1 Prior algorithm and simulations

We provide here a simulation study, which outlines the flexibility of the nonparamteric
prior introduced in the previous section when α(dx1, dx2) is a multivariate Gaussian prob-
ability measure with zero means, unitary variances and correlation ρ0. To do so we need
an algorithm to sample the infinite dimensional parameters p̃1 and p̃2 for different values
of the hyperparameters θ and ρ0. Algorithm 1 do so and it has been obtained adapting the
Algorithm 6.15 in Cont & Tankov (2004) to the atom-dependent structure.
We first sample a realization for p̃1 and then simulate the conditional distribution of p̃2,
given p̃1, under different hyperparameters choices. Figure 3.2 shows the results in terms
of cumulative distributions functions. The plots in the first and second row (ρ0 = −1

and ρ0 = −0.5) show a strong and medium negative correlation between the observables,
represented by the opposite behaviour of p̃2 and p̃1. While p̃1 associate high probabilities
to positive values, p̃2 tends to associates high probabilities to negative values. While ρ0

increases, first the conditional distribution of p̃2 becomes independent from p̃1 (ρ0 = 0)
and then shows a behaviour similar to that of p̃1 (ρ0 = 0.5 and ρ0 = 1), corresponding to
positive correlation of the observables.
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Figure 3.2: Dark green continous line: a realization of the c.d.f corresponding to p̃1, i.e.∫ x
−∞ p̃1(dx). Blue dashed lines: conditional expected value of the c.d.f. corresponding to p̃2,

given the realization of p̃1, i.e. E
[∫ x
−∞ p̃2(dx) | p̃1

]
. Light blue shaded area: 95% probability

interval for the c.d.f. corresponding to p̃2. Pink shaded area: 99% probability interval for
the c.d.f. corresponding to p̃2.
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Algorithm 1: Prior Sampler

for k ← 0 to K do
Sample Tk from an Exponential(1);

Compute S(1)
k = S

(1)
k−1 + Tk;

Sample Uk from an U(0, 1);

Compute S(2)
k = S

(1)
k

(
U
−θ/(1+θ)
k − 1

)− 1
θ ;

Compute Wj,k = (S
(j)
k σ Γ(1− σ))−

1
σ for j = 1, 2;

Sample (θ1,k, θ2,k) from G0;
end
Compute W̄j,k = Wj,k/

∑K
k=1Wj,k for j = 1, 2 and k = 1, . . . ,K;

Obtain p̃1 ≈
∑K

k=1 W̄1,kδθ1,k and p̃2 ≈
∑K

k=1 W̄2,kδθ2,k

3.6 Posterior characterization

In the previous section we illustrated interesting a priori properties of n-FuRBI. However,
the crux of Bayesian models is writing in a manageable way the posterior distribution, i.e.,
the distribution of p̃1 and p̃2 given data from model in (3.8).
Conjugacy is out of question here: even in the exchangeable context it is a property that is
shared only by the Dirichlet process (see James et al., 2006). Nevertheless, we will show
that, conditional on a set of suitable latent variables, the posterior distribution of the origi-
nal CRV (µ1, µ2) is again a CRV. Through normalization, all the other quantities of interest
become available, leading to a simple formulation and viable methods for sampling. It is
to stress once again that those results come from the high analytical tractability of CRMs
and CRVs.
Thus, consider a sample of n observationsX1:n = (X1, . . . , Xn) from p̃1 with unique values
X∗ = (X∗1 , . . . , X

∗
k) and associated multiplicities n = (n1, . . . , nk); analogously, consider m

observations Y1:m = (Y1, . . . , Ym) from p̃2 with unique values Y ∗ = (Y ∗1 , . . . , Y
∗
c ) with

multiplicities m = (m1, . . . ,mc). Notice that it is immediate to check for ties: indeed,
it suffices to identify equal observations in each sample. Instead, in general hyper-ties
cannot be deduced directly from the data: the hidden structure they induce will be the
main component of the mentioned latent structure. As already clarified and highlighted
in representation (3.4), a hyper-tie is an actual tie in the product space: it means that X∗i
and Y ∗j form a hyper-tie if they correspond to the two coordinates of the same atom. In
the following we will denote by (i, j), with 1 ≤ i ≤ k and 1 ≤ j ≤ c a hyper-tie between
X∗i and Y ∗j . Not all unique values will form an hyper-tie, thus for consistency of notation,
(i, c+ 1), with 1 ≤ i ≤ k, will denote that X∗i does not form an hyper-tie with any value in
Y ∗ and (k + 1, j), with 1 ≤ j ≤ c, will denote that Y ∗j does not form an hyper-tie with any
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value inX∗. We are now able to define the compatible latent structures, i.e., all the collection
of hyper-ties across unique values that are consistent with samplesX1:n and Y1:m.

Definition 3.3. We say that p = {(il, jl)}l is a compatible latent structure (CLS) for X1:n and
Y1:m if

1. Each element ofX∗ forms at most one hyper-tie: for any 1 ≤ i ≤ k there exists exactly one il
such that il = i.

2. Each element of Y ∗ forms at most one hyper-tie: for any 1 ≤ j ≤ c there exists exactly one jl
such that jl = j.

3. At least one coordinate refers to an element of X∗ or Y ∗: for any l, if il = k + 1 then
jl 6= c+ 1.

Finally we call P = {p | pisa CLS} the set of all compatible latent structures.

Once the latent structure p is fixed, we can collect all the hyper-ties in

∆p = {(i, j) ∈ p | i 6= k + 1 and j 6= c+ 1} ,

and all the remaining values in

∆1
p = {(i, j) ∈ p | j = c+ 1} , ∆2

p = {(i, j) ∈ p | i = k + 1} .

If X∗i and Y ∗j form a hyper-tie, it means that (X∗i , Y
∗
j ) is an actual atom in representation

(3.4). Instead, if X∗i does not form a hyper-tie, we have a partial knowledge of the original
pair: the unknown second coordinate can be sampled from PX∗i (·), that is the conditional
distribution given X∗i , induced by the joint measure G0. Analogously happens if Y ∗j does
not form a hyper-tie.
We consider the following simplifying notation

gi,j = g0(X∗i , Y
∗
j ), gi,c+1 = p0(X∗i ), gk+1,j = p0(Y ∗j ),

where g0 and p0 are the density functions ofG0 and P0 respectively, that we assume to exist
with respect to suitable dominating measures. Finally, we consider the following integrals

τn,m(u) =

∫
R2
+

e−u1s1−u2s2sn1s
m
2 ρ(ds1,ds2), u = (u1, u2),

where often n and m will be equal to ni and mj , with 1 ≤ i ≤ k + 1, 1 ≤ j ≤ c + 1 and
nk+1 = mc+1 = 0 for consistency.
Thus, the set of latent variables with the associated distributions, conditional on X1:n and
Y1:m, is given by
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• p ∈ P, whose probability mass function is proportional to ∏
(i,j)∈p

gi,j

∫
R2
+

un−1
1 um−1

2

∏
(i,j)∈p

τni,mj (u)e−ψb(u) du.

• (U1, U2), whose density on R2
+ is proportional to

un−1
1 um−1

2

∏
(i,j)∈p

τni,mj (u)e−ψb(u)

• {Zxi }i, whose distribution is given by PX∗i (·), for any i = 1, . . . k.

• {Zyj }j , whose distribution is given by PY ∗j (·), for any j = 1, . . . , c.

We are now ready to state the main theorem on posterior characterization.

Theorem 3.2. Consider samples X1:n and Y1:m from model (3.8), with Q being the law of a n-
FuRBI. Then, the distribution of (µ1, µ2) conditional on X1:n, Y1:m and the set of latent variables
p, U1, U2, {Zxi }i, {Z

y
j }j is given by

(µ̂1, µ̂2) +
∑

(i,j)∈∆p

Ji,jδ(X∗i ,Y ∗j ) +
∑

(i,j)∈∆1
p

Ji,c+1δ(X∗i ,Zxi ) +
∑

(i,j)∈∆2
p

Jk+1,jδ(Zyj ,Y ∗j ),

where

• (µ̂1, µ̂2) is a CRV with intensity e−U1s1−U2s2ρ(ds1,ds2)G0(dx).

• Ji,j = (J1
i,j , J

2
i,j) are jumps with density proportional to sni1 s

mj
2 e−U1s1−U2s2ρ(ds1,ds2).

• (µ̂1, µ̂2) and Ji,j are independent.

Proof. We need to compute the conditional Laplace functional of (µ1, µ2), i.e.

E
[
e−

∫
X2 h1(x)µ1(dx)−

∫
X2 h2(x)µ2(dx) |X1:n,Y1:m

]
,

with hi : X2 → R measurable functions. Define Aj = Aj,ε = {x ∈ X | d(x,X∗i ) < ε} and

Bj = Bj,ε =
{
x ∈ X | d(x, Y ∗j ) < ε

}
, with 1 ≤ i ≤ k and 1 ≤ j ≤ c, such that Ai ∩ Aj = ∅

and Bi ∩Bj = ∅ for any i 6= j. Moreover, denote

Ak+1 =
(
∪ki=1Ai

)c
, Bc+1 = (∪ci=1Bi)

c .
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Thus our goal becomes to compute

E
[
e−

∫
X2 h1(x)µ1(dx)−

∫
X2 h2(x)µ2(dx) |X1:n,Y1:m

]
= lim

ε→0
E
[
e−

∫
X2 h1(x)µ1(dx)−

∫
X2 h2(x)µ2(dx) |X∗ ∈ ×kj=1Aj ,Y

∗ ∈ ×cj=1Bj

]
= lim

ε→0

E
[
e−

∫
X2 h1(x)µ1(dx)−

∫
X2 h2(x)µ2(dx)

∏k
j=1 p̃1(Aj)

nj
∏c
j=1 p̃2(Bj)

mj
]

E
[∏k

j=1 p̃1(Aj)nj
∏c
j=1 p̃2(Bj)mj

] .

(3.25)

We start to evaluate

E
[
p̃1(A1)n1 . . .p̃1(Ak)

nk p̃2(B1)m1 p̃2(Bc)
mc
]

=

E
[
µ̃1(A1)n1 . . . µ̃1(Ak)

nk µ̃2(B1)m1 µ̃2(Bc)
mc

µ̃1(X)nµ̃2(X)m

]
=

= E
[
µ1(A1 × X)n1 . . . µ1(Ak × X)nkµ2(X×B1)m1µ2(X×Bc)mc

µ1(X× X)nµ2(X× X)m

]
= I.

By Netwon’s binomial

µ1(Ah × X) =
∑

ih1+...ihc+1=nh

(
nh

ih1 , . . . , i
h
c+1

) c+1∏
r=1

µ
ihr
1 (Ah ×Br), h = 1, . . . , k,

µ2(X×Br) =
∑

jr1+...jrk+1=mr

(
mr

jr1 , . . . , j
r
k+1

) k+1∏
h=1

µ
jrh
2 (Ah ×Br), r = 1, . . . , c.

For ease of notation denote∑
i,j

(
n
i

)(
m
j

)
=

∑
i11+...i1c+1=n1

(
n1

i11, . . . , i
1
c+1

)
· · ·

∑
ic+1
1 +...ik+1

c+1=nk+1

(
nk+1

ik+1
1 , . . . , ik+1

c+1

)
∑

j11+...j1k+1=m1

(
m1

j1
1 , . . . , j

1
k+1

)
· · ·

∑
jk+1
1 +...jk+1

k+1=mk+1

(
mk+1

jk+1
1 , . . . , jk+1

k+1

)
.

Thus

I =
∑

i,j

(
n
i

)(
m
j

)
Ii,j,

with

Ii,j = E


(∏k

h=1

∏c
r=1 µ

ihr
1 (Ah ×Br)µ

jrh
2 (Ah ×Br)

)∏k
h=1 µ

ihc+1

1 (Ah ×Bc+1)
∏c
r=1 µ

jrk+1

2 (Ak+1 ×Br)

µ1(X× X)nµ2(X× X)m

 .
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Moreover, we have

1

µ1(X× X)nµ2(X× X)m
=

1

Γ(n)Γ(m)

∫
R2
+

un−1
1 um−1

2 e−u1µ1−u2µ2 du,

with u = (u1, u2).

By Fubini’s Theorem

Ii,j =

∫
R2
+

un−1
1 um−1

2

Γ(n)Γ(m)
E
[
e−u1µ1−u2µ2

(
k∏

h=1

c∏
r=1

µ
ihr
1 (Ah ×Br)µ

jrh
2 (Ah ×Br)

)
k∏

h=1

µ
ihc+1

1 (Ah ×Bc+1)

c∏
r=1

µ
jrk+1

2 (Ak+1 ×Br)
]

du =

=

∫
R2
+

un−1
1 um−1

2

Γ(n)Γ(m)
ρi,j(u) du.

By independence of the increments we have

ρi,j(u) = E
[( k∏

h=1

c∏
r=1

e−u1µ1(Ah×Br)−u2µ2(Ah×Br)µ
ihr
1 (Ah ×Br)µ

jrh
2 (Ah ×Br)

)
k∏

h=1

e−u1µ1(Ah×Bc+1)−u2µ2(Ah×Bc+1)µ
ihc+1

1 (Ah ×Bc+1)

c∏
r=1

e−u1µ1(Ak+1×Br)−u2µ2(Ak+1×Br)µ
jrk+1

2 (Ak+1 ×Br)
]

Thus

ρi,j(u) =

k∏
h=1

c∏
r=1

E
[
e−u1µ1(Ah×Br)−u2µ2(Ah×Br)µ

ihr
1 (Ah ×Br)µ

jrh
2 (Ah ×Br)

]
k∏

h=1

E
[
e−u1µ1(Ah×Bc+1)−u2µ2(Ah×Bc+1)µ

ihc+1

1 (Ah ×Bc+1)

]
c∏

r=1

E
[
e−u1µ1(Ak+1×Br)−u2µ2(Ak+1×Br)µ

jrk+1

2 (Ak+1 ×Br)
]
.
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Considering each element separately we have

E
[
e−u1µ1(Ah×Br)−u2µ2(Ah×Br)µi1(Ah ×Br)µj2(Ah ×Br)

]
= E

[
(−1)i+j

∂i+j

∂ui1∂u
j
2

e−u1µ1(Ah×Br)−u2µ2(Ah×Br)

]

= (−1)i+j
∂i+j

∂ui1∂u
j
2

E
[
e−u1µ1(Ah×Br)−u2µ2(Ah×Br)

]
= (−1)i+j

∂i+j

∂ui1∂u
j
2

{
e
−

∫
Ah×Br

∫
R2+

(1−e−u1s1−u2s2 ) ρ(ds)G0(x)
}
.

Recall that we are interested in the limit as ε→ 0, so that

∂i+j

∂ui1∂u
j
2

{
e
−

∫
Ah×Br

∫
R2+

(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)
}

∼ e
−

∫
Ah×Br

∫
R2+

(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)

∂i+j

∂ui1∂u
j
2

{∫
Ah×Br

∫
R2
+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}
,

(3.26)

where we say f ∼ g if limε→0 f(x)/g(x) = 1.

It comes from simple computations

∂i+j

∂ui1∂u
j
2

{
e
−

∫
Ah×Br

∫
R2
+
(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)

}
=

∂i+j−1

∂ui−11 ∂uj2

{
−
∫
Ah×Br

∫
R2

+

e−u1s1−u2s2s1 ρ(ds)G0(dx)e
−

∫
Ah×Br

∫
R2
+
(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)

}
=

∂i+j−2

∂ui−21 ∂uj2

{∫
Ah×Br

∫
R2

+

e−u1s1−u2s2s21 ρ(ds)G0(dx)e
−

∫
Ah×Br

∫
R2
+
(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)

+

(∫
Ah×Br

∫
R2

+

e−u1s1−u2s2s1 ρ(ds)G0(dx)

)2

e
−

∫
Ah×Br

∫
R2
+
(1−e−u1s1−u2s2 ) ρ(ds)G0(dx)

}
,

and

lim
ε→0

(∫
Ah×Br

∫
R2
+
e−u1s1−u2s2s1 ρ(ds)G0(dx)

)2∫
Ah×Br

∫
R2
+
e−u1s1−u2s2s2

1 ρ(ds)G0(dx)
= 0.

Repeating the argument we get (3.26).
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Thus, denoting ρ(u) =
∑

i,j
(n

i

)(m
j

)
ρi,j(u), aggregating the terms

ρ(u) ∼
∑

i,j

(
n
i

)(
m
j

)
(−1)n+me−ψb(u)

k∏
h=1

c∏
r=1

{
∂i
h
r+j

r
h

∂u
ihr
1 ∂u

jrh
2

∫
Ah×Br

∫
R2

+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}
k∏
h=1

{
∂i
h
c+1

∂u
ihc+1

1

∫
Ah×Bc+1

∫
R2

+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}
c∏
r=1

{
∂j

r
k+1

∂u
irk+1

2

∫
Ak+1×Br

∫
R2

+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}

=
∑

i,j

(
n
i

)(
m
j

)
(−1)n+mV (i, j).

The following three Lemmas characterizes the set of indices (i, j).

Lemma 3.8. Consider (i, j) such that 0 < ihr , i
h
l < nh, with r > l and 1 ≤ h ≤ k. Then ∃(̃i, j̃)

such that limε→0 V (i, j)/V (̃i, j̃)→ 0.

Proof. For ease of notation denote ih = (ih1 , . . . , i
h
c+1). Then

• If r = c+ 1, set ĩh = (ih1 , . . . , i
h
l + ihc+1, . . . , 0).

• If jrh = 0, set ĩh = (ih1 , . . . , i
h
l + ihr , . . . , 0, . . . ).

• If jlh = 0, set ĩh = (ih1 , . . . , 0, . . . , i
h
r + ihl , . . . ).

• If jlh > 0 and jrh > 0, set j̃r = (jr1 , . . . , 0, . . . , j
r
k+1 + jrh) and ĩh = (ih1 , . . . , i

h
l +

ihr , . . . , 0, . . . ).

Indeed, considering the last case

lim
ε→0

V (i, j)
V (̃i, j̃)

= lim
ε→0

∫
Ah×Br

∫
R2
+
e−u1s1−u2s2s

ihr
1 s

jrh
2 ρ(ds)G0(dx)∫

Ac+1×Br

∫
R2
+
e−u1s1−u2s2s

jrh+jrc+1

2 ρ(ds)G0(dx)
= 0.

Lemma 3.8 guarantees that ih has exactly one element different from 0, that is equal to nh.

Lemma 3.9. Consider (i, j) such that ihr = nh and jrh = 0. Then ∃(̃i, j̃) such that
limε→0 V (i, j)/V (̃i, j̃)→ 0.

Proof. Set (̃i, j̃) equal to (i, j), apart from ĩhr = 0 and ĩhc+1 = nh.

Lemma 3.10. Consider (i, j) such that ihc+1 = nh and jrh > 0. Then ∃(̃i, j̃) such that
limε→0 V (i, j)/V (̃i, j̃)→ 0.

Proof. Set (̃i, j̃) equal to (i, j), apart from j̃rh = 0 and j̃rk+1 = mr.
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The three lemmas tell that each relevant (i, j) corresponds to a CLS, i.e.

ρ(u) ∼
∑
p∈P

(−1)n+me−ψb(u)
∏

(i,j)∈∆p

{
∂ni+mj

∂uni1 ∂u
mj
2

∫
Ai×Bj

∫
R2
+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}
∏

(i,j)∈∆1
p

{
∂ni

∂uni1

∫
Ai×Bc+1

∫
R2
+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}
∏

(i,j)∈∆2
p

{
∂mj

∂u
mj
2

∫
Ak+1×Bj

∫
R2
+

(1− e−u1s1−u2s2) ρ(ds)G0(dx)

}
.

Evaluating the derivatives we have

ρ(u) ∼
∑
p∈P

e−ψb(u)
∏

(i,j)∈∆p

{∫
Ai×Bj

∫
R2
+

e−u1s1−u2s2sni1 s
mj
2 ρ(ds)G0(dx)

}
∏

(i,j)∈∆1
p

{∫
Ai×Bc+1

∫
R2
+

e−u1s1−u2s2sni1 ρ(ds)G0(dx)

}
∏

(i,j)∈∆2
p

{∫
Ak+1×Bj

∫
R2
+

e−u1s1−u2s2s
mj
2 ρ(ds)G0(dx)

}
.

Finally, we get

I ∼
∑
p∈P

∫
R2
+

un−1
1 um−1

2

Γ(n)Γ(m)
e−ψb(u)

∏
(i,j)∈∆p

{∫
Ai×Bj

∫
R2
+

e−u1s1−u2s2sni1 s
mj
2 ρ(ds)G0(dx)

}
∏

(i,j)∈∆1
p

{∫
Ai×Bc+1

∫
R2
+

e−u1s1−u2s2sni1 ρ(ds)G0(dx)

}
∏

(i,j)∈∆2
p

{∫
Ak+1×Bj

∫
R2
+

e−u1s1−u2s2s
mj
2 ρ(ds)G0(dx)

}
du.
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Evaluating the numerator of (3.25) with the same reasoning yields a formula asymptotic to

∑
p∈P

∫
R2
+

un−1
1 um−1

2

Γ(n)Γ(m)
e−ψh(u)

∏
(i,j)∈∆p

{∫
Ai×Bj

∫
R2
+

e−(h1(x)+u1)s1−(h2(x)+u2)s2sni1 s
mj
2 ρ(ds)G0(dx)

}
∏

(i,j)∈∆1
p

{∫
Ai×Bc+1

∫
R2
+

e−(h1(x)+u1)s1−(h2(x)+u2)s2sni1 ρ(ds)G0(dx)

}
∏

(i,j)∈∆2
p

{∫
Ak+1×Bj

∫
R2
+

e−(h1(x)+u1)s1−(h2(x)+u2)s2s
mj
2 ρ(ds)G0(dx)

}
du.

where ψh(u) =
∫
X2

∫
R2
+

(
1− e−(h1(x)+u1)s1−(h2(x)+u2)s2

)
ρ(ds)G0(dx).

Notice that 1−e−(h1(x)+u1)s1−(h2(x)+u2)s2 = [1− e−u1s1−u2s2 ]+
[
1− e−h1(x)s1−h2(x)s2

]
so that

e−ψh(u) = e−ψb(u)e
−

∫
X2

∫
R2+

[1−e−h1(x)s1−h2(x)s2 ]ρ(ds)G0(dx)

= e−ψb(u)E
[
e−

∫
X2 h1(x) µ̂1(dx)−

∫
X2 h2(x) µ̂2(dx)

]
.

Notice that G0(Ah × Br) = εG0(Ah×Br)
ε ∼ εgh,r, for 1 ≤ i ≤ c, 1 ≤ j ≤ k, G0(Ah × dx) ∼

εgh,c+1QX∗h(dx) and G0(dx×Br) ∼ εgk+1,rPY ∗r (dx).

Thus, evaluating the limit in (3.25) we get

E
[
e−

∫
X2 h1(x)µ1(dx)−

∫
X2 h2(x)µ2(dx) |X1:n,Y1:m

]
=
∑
p∈P

∫
R2
+

E
[
e−

∫
X2 h1(x) µ̂1(dx)−

∫
X2 h2(x) µ̂2(dx)

]
×

∏
(i,j)∈∆p

∫
R2
+

e−h1(X∗i ,Y
∗
j )s1−h2(X∗i ,Y

∗
j )s2 s

ni
1 s

mj
2 e−u1s1−u2s2ρ(ds)

τni,mj(u)

×
∏

(i,j)∈∆1
p

∫
X

∫
R2
+

e−h1(X∗i ,x2)s1−h2(X∗i ,x2)s2 s
ni
1 e
−u1s1−u2s2ρ(ds)

τni,0(u)
QX∗i (dx2)

×
∏

(i,j)∈∆2
p

∫
X

∫
R2
+

e−h1(x1,Y ∗2 )s1−h2(x1,Y ∗2 )s2 s
mj
2 e−u1s1−u2s2ρ(ds)

τ0,mj(u)
PY ∗j (dx1)

×

 ∫
R2
+
un−1

1 um−1
2

∏
(i,j)∈p gi,jτni,mj (u)e−ψb(u) du∑

q∈P
∫
R2
+
un−1

1 um−1
2

∏
(i,j)∈q gi,jτni,mj (u)e−ψb(u)du


un−1

1 um−1
2

∏
(i,j)∈p τni,mj (u)e−ψb(u) du∫

R2
+
un−1

1 um−1
2

∏
(i,j)∈p τni,mj (u)e−ψb(u) du

,

as desired.
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Conditional on the latent variables, the structure is very natural: the posterior is given by a
CRV with modified intensity and fixed locations, given by the pairs formed by the hyper-
ties. Notice that the result is reminiscent of the analogous for the exchangeable case (James
et al., 2009); however, a significant novelty is given by the role played by hyper-ties.
The distribution of the latent variables appears to be very complex, nonetheless it yields a
nice interpretation. For instance, the mass function of the latent structure p is the product
of two terms: the probability of observing the number of hyper-ties specified by p times
the likelihood that exactly those pairs are formed, through the density function g0. Thus,
thanks to the homogeneity of the original CRV, we observe a separate effect for jumps and
locations on this hidden clustering structure. The next Corollary shows how the posterior
distribution of the normalized measures can be deducted from Theorem 3.2.

Corollary 3.2. Consider the same setting of Theorem 3.2. Then the conditional distribution of p1

in (3.4), givenX1:n, Y1:m and the appropriate latent variables is given by

w1
µ̂1

T1
+ w2

∑
(i,j)∈∆p

J1
i,jδ(X∗i ,Y ∗j )∑

(i,j)∈∆p
J1
i,j

+ w3

∑
(i,j)∈∆1

p
J1
i,c+1δ(X∗i ,Zxi )∑

(i,j)∈∆1
p
J1
i,c+1

+ w4

∑
(i,j)∈∆2

p
J1
k+1,jδ(Zyj ,Y ∗j )∑

(i,j)∈∆2
p
J1
k+1,j

,

where T1 = µ̂1(X× X), while

w1 ∝ T1, w2 ∝
∑

(i,j)∈∆p

J1
i,j , w3 ∝

∑
(i,j)∈∆1

p

J1
i,c+1, w4 ∝

∑
(k+1,j)∈∆2

p

J1
i,j ,

with the constraint
∑4

i=1wi = 1. The expressions for µ̂1, the jumps J1
i,j and the latent variables

can be found in the statement of Theorem 3.2.

Proof. We use the short notation µ1(f) =
∫
X f(x)µ1(dx) for any measurable function f :

X → R such that µ1(|f |) < ∞. Denoting U the set of latent variables of Theorem 3.2, i.e.
U = (p, U1, U2, Z

x, Zy) for any y1, . . . , yn ∈ (0, 1) and A1, . . . , An ∈X2 we get

P [p1(A1) ≤ y1, . . . , pn(An) ≤ yn | U,X1:n,Y1:m] =

= P [µ1(1A1 − y1) ≤ 0, . . . , µn(1An − yn) ≤ 0 | U,X1:n,Y1:m] .
(3.27)

The result follows since the finite dimensional distributions of p1 given U,X1:n and Y1:m

coincide with the ones of the normalized posterior distribution of µ1, given U,X1:n and
Y1:m.

Of course an analogous representation holds for p2.
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3.6.1 Predictive structure

While dealing with Bayesian models, it is often of great interest the predictive distribution,
that is the distribution of new observations given past data. On the one hand, it gives more
intuition on how the model behaves and learns, on the other hand, it coincides with the
estimate of the distribution under a square loss function. For this reason, it can be used to
develop marginal algorithms that avoid the direct sampling of p̃1 and p̃2, which are infinite-
dimensional objects. In Lemma 3.4 we saw how to sample the first pair of observations.
Next theorem illustrates the general case.

Theorem 3.3. Consider samplesX1:n and Y1:m from model (3.8), with the same setting of Theorem
3.2. Then there exist probability weights ξ0, {ξxi } and {ξyj } such that for any C ∈X it holds

P
(
Xn+1 ∈ C |X1:n,Y1:m

)
= ξ0P0(C) +

k∑
i=1

ξxi δX∗i (C) +
c∑
j=1

ξyjPY ∗j (C) .

Analogously, there exist probability weights η0, {ηxi } and {ηyj } such that for any C ∈X it holds

P
(
Ym+1 ∈ C |X1:n,Y1:m

)
= η0P0(C) +

c∑
j=1

ηyj δY ∗j (C) +

k∑
i=1

ηxi PX∗i (C) .

Explicit formulae for the weights are available here below in the proof.

Proof. Denote U = (p, U1, U2) with domain D. Then

P(Xn+1 ∈ dx |X1:n,Y1:m) = E[p̃1(dx) |X1:n,Y1:m] =

∫
D
E[p̃1(dx) | U = u,X1:n,Y1:m]F (du),

where F (·) is the distribution of U a posteriori with u = (p, u1, u2). Recalling the notation
in Corollary 2 we have

E[p̃1(dx) | U = u,X1:n,Y1:m] =E
[
µ̂1(dx× X)

R

]
+ E

[∑
(i,j)∈∆p

J1
i,jδX∗i

R

]

+ E

[∑
(i,j)∈∆1

p
J1
i,c+1δX∗i

R

]
+ E

[∑
(i,j)∈∆2

p
J1
k+1,jδZyj

R

]

=
4∑

k=1

Ik,

whereR = T1+
∑

(i,j)∈∆p
J1
i,j+

∑
(i,j)∈∆1

p
J1
i,c+1+

∑
(i,j)∈∆2

p
J1
k+1,j . Denoting S =

∑
(i,j)∈∆p

J1
i,j+∑

(i,j)∈∆1
p
J1
i,c+1 +

∑
(i,j)∈∆2

p
J1
k+1,j and exploiting the conditional independence between J1

ij
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and µ̂1 we have

I1 =

∫
R+

E
[
e−vS

]
E
[
µ̂1(dx× X)e−vT1

]
dv

= θP0(dx)

∫
R+

 ∏
(i,j)∈p

τni,mj (u1 + v, u2)

τni,mj (u1, u2)

 τ1,0(u1 + v, u2)e−ψ
u
b (v,0) dv,

whereψu
b (λ1, λ2) is the Laplace exponent of (µ̂1, µ̂2) in Theorem 3.2. Noticing thatψu

b (v, 0)+
ψ(u1, u2) = ψ(u1 + v, u2) we obtain

ξ0 =

∫
D

I1 F (du)

= θP0(dx)

∫ ∫
R3

+

un−11 um−12

 ∏
(i,j)∈p

τni,mj (u1 + v, u2)

 τ1,0(u1 + v, u2)e−ψ(u1+v,u2) du1du2dvL(dp)

=
θP0(dx)

n

∫ ∫
R2

+

un1u
m−1
2

 ∏
(i,j)∈p

τni,mj (u1, u2)

 τ1,0(u1, u2)e−ψ(u1,u2) du1du2L(dp)

=
θP0(dx)

n

∫
D

u1τ1,0(u1, u2)F (du),

where L(·) is the distribution of p and the second equality follows from the change of
variables (w, z) = (u1 + v, u1). The proof for the remaining weights follows the same lines
and leads to

ξxi =
1

n

∫
D
u1

[
τni+1,mj (u1, u2)

τni,mj (u1, u2)
+
τni+1,0(u1, u2)

τni,0(u1, u2)

]
F (du)

and

ξyi =
1

n

∫
D
u1
τ1,mj (u1, u2)

τ0,mj (u1, u2)
F (du).

The weights for Ym+1 can be analogously computed.

The predictive distributions have a quite intuitive form, since they are linear combinations
of the centering distribution P0, a weighted version of the empirical distribution and a
last term that depends on the other sample. It is somewhat similar to the structure of
the exchangeable case (James et al., 2009), with the addition of the last term; this shows
very clearly how posterior inference changes incorporating heterogeneous information and
performing borrowing of information.

Example 3.7 (n-FuRBI with equal atoms). If the joint distribution G0 is degenerate such that
the atoms are completely shared between p̃1 and p̃2, then PZ(·) = δZ(·). Therefore, the last term in
Theorem 3.3 becomes a weighted version of the empirical distribution relative to the other sample.
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3.7 Sampling methods for FuRBIs

The problem of sampling from the posterior distributions in models that involve infinite
dimensional parameters have been extensively studied and can in general be approached
in two different ways. Thanks to conditional algorithms, it is possible to sample approxima-
tions of the infinite dimensional object exploiting its series representation (see, for instance
Ishwaran & James, 2001; Arbel & Prünster, 2017). Alternatively, one can use marginal algo-
rithms, that integrate out the random measures and sample sequentially from the predic-
tive distributions (see, for instance, Neal, 2000).

3.7.1 Conditional samplers

To develop a conditional algorithm, we can sample from the distribution of (µ̃1, µ̃2) and
then normalize each draw to get an approximate realization of the random probabilities.
We develop below a general conditional sampler based on this approach that can be tai-
lored to specific choices of the intensity in the prior.
Alternatively, a second strategy is to sample approximate draws from the posterior dis-
tribution of the random probabilities (p̃1, p̃2). We provide an example for Gamma FuRBI
CRMs with equal jumps.

Conditional sampler based on the law of the CRV

By Theorem 3.2 we know that a posteriori µ = (µ1, µ2) is the sum of two components, that
we call µobs and µ̂ and are such that

µobs =
∑

(i,j)∈∆p

Ji,jδ(X∗i ,Y ∗j ) +
∑

(i,j)∈∆1
p

Ji,c+1δ(X∗i ,Zxi ) +
∑

(i,j)∈∆2
p

Jk+1,jδ(Zyj ,Y ∗j ).

where Ji,j = (J1
i,j , J

2
i,j), and

µ̂ =

(
+∞∑
h=1

S1
hδ(Vh,Wh),

+∞∑
h=1

S2
hδ(Vh,Wh)

)

where µ̂ is a CRV with Lévy intensity e−U1s1−U2s2ρ(ds1,ds2)G0(dx). Define the marginal
and joint tail integrals of µ̂ as

N1(s) =

+∞∫
s

+∞∫
0

e−U1s1−U2s2ρ(du1,du2)

N2(s) =

+∞∫
0

+∞∫
s

e−U1s1−U2s2ρ(du1,du2)
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and

N(s1, s2) =

+∞∫
s1

+∞∫
s2

e−U1s1−U2s2ρ(du1, du2)

Lastly, define the correspondent Lévy copula as

F (x, y) = N(N−1
1 (x), N−1

2 (y))

If F (x, y) is continuous on [0,+∞]2, the iterative conditional sampler based on Ferguson
and Klass algorithm (Ferguson & Klass, 1972) reads

(a) Generate µobs as follows

(a1) Generate (U1, U2,p) from the distributions specified in Theorem 3.2;

(a2) Generate Ji,j = (J1
i,j , J

2
i,j) from the distributions specified in Theorem 3.2;

(a3) Generate Zxi and Zyj from the distributions specified in Theorem 3.2.

(b) Generate an approximation of µ̂, given by
(

M∑
h=1

S1
hδ(Vh,Wh),

M∑
h=1

S2
hδ(Vh,Wh)

)
as follows

(b1) Generate ξx1 , . . . , ξ
x
M from a Poisson process with unit rate;

(b2) Generate ξy1 , . . . , ξ
y
M from ξyh ∼

∂
∂xF (x, ξ)

∣∣∣∣∣
x=ξxh

(b3) Determine (S1
h, S

2
h) solving

ξxh = N1(S1
h) ξyh = N2(S2

h)

(b4) Generate (Vh,Wh) from G0.

(c) Obtain a draw from p̃1 as follows

p̃1 ≈

M∑
h=1

S1
hδVh +

∑
(i,j)∈∆p

J1
i,jδX∗i +

∑
(i,j)∈∆1

p
J1
i,c+1δX∗i +

∑
(i,j)∈∆2

p
J1
k+1,jδZyj

M∑
h=1

S1
h +

∑
(i,j)∈∆p

J1
i,j +

∑
(i,j)∈∆1

p
J1
i,c+1 +

∑
(i,j)∈∆2

p
J1
k+1,j

.

An analogous approximation can be computed for p̃2.

Gamma process with equal jumps

In the case of a process with equal jumps, we know from the definition that the measures in
the product space are p1 = p2 = p. Therefore, posterior inference can be conducted without
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loss of generality on

p =
∑
k≥1

W̄kδ(θk,φk), with (θk, φk)
i.i.d.∼ G0(·),

where {W̄k}k are the weights of a Dirichlet process, which can defined through the cele-
brated stick-breaking construction (Sethuraman, 1994). In this context, Ishwaran & James
(2001) developed a conditional algorithm for hierarchical mixture models, called blocked
Gibbs sampler, based on the approximation

p ≈
N∑
k=1

W̄kδ(θk,φk), with N large.

Exploiting the nice analytical properties of the Dirichlet process, it is possible to devise
simple formulae for the posterior distribution of the N jumps and N locations: see Section
5 of Ishwaran & James (2001) for more details.

3.7.2 Marginal algorithms

Given X1:n and Y1:m and using the results in Theorem 3.3, we can sample iteratively new
observations from p̃1 as follows.

(a) Compute weights ξ0, {ξxi } and {ξyj } fromX1:n and Y1:m.

(b) Draw X from

m(dx) = ξ0P0(dx) +
k∑
i=1

ξxi δX∗i (dx) +
c∑
j=1

ξyjPY ∗j (dx) .

(c) Add X toX1:n.

The algorithm is straightforward, but relies on the computation of the weights at point (a):
this is not optimal, since in general the explicit evaluation can be demanding. Nonetheless,
Theorem 3.2 and Corollary 3.2 show that, conditional on a suitable set of latent variables,
the posterior representation simplifies greatly. Indeed, given (X1:n,Y1:m, U1, U2,p), the
predictive distribution of the first sample is given by

m(dx) ∝θτ1,0(U1, U2)P0(dx) +
∑

(i,j)∈∆p

τni+1,mj (U1, U2)

τni,mj (U1, U2)
δX∗i (dx)

+
∑

(i,j)∈∆1
p

τni+1,0(U1, U2)

τni,0(U1, U2)
δX∗i (dx) +

∑
(i,j)∈∆2

p

τ1,mj (U1, U2)

τ0,mj (U1, U2)
PY ∗j (dx).

(3.28)

Those new weights are often easier to compute, as the next Example shows.
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Example 3.8 (Inverse Gaussian n-FuRBIs with equal jumps). In this case τn,m(u1, u2) =∫
R s

n+me−(u1+u2)sρ(ds), where ρ(ds) is the common marginal jump intensity. If the Lévy intensity
is given by

v(ds, dx) =
1√
2π

e−
1
2
s

s
3
2

ds α(dx)

we call the resulting NRMI normalized inverse gaussian process (whose application on Bayesian
nonparametrics has been analyzed in Lijoi et al. (2005)). It holds

τj(u1, u2) =
2j−1Γ

(
j − 1

2

)
√
π(2u+ 1)j−

1
2

, u = u1 + u2.

Thus, conditional on the usual latent variables we have

m(dx) ∝θP0(dx) +
2√

2U + 1

∑
(i,j)∈∆p

(
ni +mj −

1

2

)
δX∗i (dx)

+
2√

2U + 1

∑
(i,j)∈∆1

p

(
ni −

1

2

)
δX∗i (dx) +

2√
2U + 1

∑
(i,j)∈∆2

p

(
mj −

1

2

)
PY ∗j (dx),

where U = U1 + U2. Sampling from this mixture is straightforward.

Thus we can derive a new marginal algorithm that reads:

(a) Draw (U1, U2,p) given X1:n and Y1:m, from the distributions specified in Theorem
3.2.

(b) Draw X from m(dx) in (3.28).

(c) Add X toX1:n.

However, even the full conditional distribution of p may not always be available in closed
form, and it may be computationally intensive to evaluate, since it may have a very large
support. When this is the case, we may encode the latent clustering structure in a more
convenient way introducing two arrays of latent variables cx = (ci,x)i≥1 and cy = (cj,y)j≥1

such that: ci,x = ci′,x denotes a tie between Xi and Xi′ , cj,y = cj′,y denotes a tie between Yj
and Yj′ , while ci,x = cj,y denotes a hyper-tie between Xi and Yj . Moreover, we reorder the
unique values inX∗ and Y ∗, so that

X∗c = Xi iff ci,x = c and Y ∗c = Yj iff cj,y = c
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So that

P[cn+1,x = c | cx, cy,X∗,Y ∗] =


P[Xn+1 = X∗c | cx, cy,X∗,Y ∗], for c ∈ c−(i)

x∫
P[Xn+1 = x | cy,Y ∗] pY ∗c (x)dx, for c ∈ cy \ c−(i)

x∫
P[Xn+1 = x] p0(x)dx, otherwise

Finally notice that the distribution of p, given cx and cy, is degenerate. Moreover, the
posterior distribution of (U1, U2) given p is equal to the posterior distribution of (U1, U2)

given (cx, cy). Therefore, we may build a marginal sampler sampling cx, cy instead of
p, without modifying the full conditional distribution for U1 and U2. The final marginal
algorithm reads:

(a) Draw (U1, U2), cx and cy.

(b) DrawX∗ and Y ∗.

The advantage of such approach is twofold. Firstly, we do not need to sample directly for
the full conditional distribution of p. Secondly, samplingX∗ and Y ∗, instead ofX and Y ,
improves the mixing of the algorithm (cf. Neal, 2000).

3.8 Illustration

3.8.1 Bayesian mixture models

Discrete Bayesian models, as the one specified in (3.8), are usually not employed directly
on the data, but as a building block in hierarchical mixture models: in this setting X and
Y are hidden values that describes the clustering structure within the data, as already
mentioned in Section 1.2.2. Such models have been introduced by Ferguson (1983) and Lo
(1984) for the Dirichlet processes and gained popularity thanks also to the availability of
MCMC methods for posterior sampling (Escobar & West, 1995; Ishwaran & James, 2001;
Neal, 2000). Suppose {f(· | x) : x ∈ X} is a family of non-negative kernels on a Polish
space W, such that

∫
f(w | x)λ(dw) = 1 for a suitable dominating measure λ. Then the

model can be formulated as

Wi |Xi
ind∼ f(· | Xi)

Xi | p̃1
i.i.d.∼ p1

,
Vj |Yj

ind∼ f(· | Yj)

Yj | p̃2
i.i.d.∼ p2

, (p̃1, p̃2) ∼ n-FuRBI. (3.29)

where (Wi)
n
i=1 and (Vj)

m
j=1 are the observable samples. Integrating out the latent variables

Xi and Yj , the data are exchangeable draws from suitable countable mixtures, i.e.

Wi | p̃1
iid∼
∫
f(· | x) p̃1(dx), Vj | p̃2

iid∼
∫
f(· | y) p̃2(dy).
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Example 3.9 (Gaussian mixtures). We assume f(· | x) := N(· | x, σ2), with σ2 positive known
constant, to be the normal density. Thus, the latent parameter is given by the mean, i.e. X = R. In
this case

Cov(Xi, Yj) = Cov(Wi, Vj),

so that the joint behavior of the latent means is reflected on the observations: this shows the impor-
tance of the correlation structure given by Proposition 3.1 also for hierarchical models. As a gener-
alization, the latent parameters could specify both the mean and the variance, with X = R× R+.

Clearly the posterior distribution given samples W1:n = (W1, . . . ,Wn) and V1:m = (V1, . . . ,

Vm) is of interest: however it requires to integrate out all the possible partitions of the
n+m latent variables. Luckily, the sampling schemes developed in the end of the previous
section allow us to set up a Gibbs sampler for drawing from the posterior distribution of
X1:n and Y1:m.
For instance, denoting Xt = (Xt

1, . . . , X
t
n) and Y t = (Y t

1 , . . . , Y
t
n) the vectors sampled at

step t, the marginal algorithm reads

1. Initialize at randomX0 and Y 0.

2. For any t ≥ 1 do:

(a) Draw (U1, U2,p) given Xt−1 and Y t−1, from the distributions specified in Theorem
3.2.

(b) DrawXt as follows: for any i sample Xt
i from

q(dx |Xt
−i) = qi,0(U1, U2)P0(dx) +

∑
(i,j)∈∆p

qi,j(U1, U2)δX∗i

+
∑

(i,j)∈∆1
p

q1
i,j(U1, U2)δX∗i (dx) +

∑
(i,j)∈∆p

q2
i,j(U1, U2)PY ∗j (dx),

where Xt
−i =

(
Xt

1, . . . , X
t
i−1, X

t−1
i+1 , . . . X

t−1
n

)
, with unique values (X∗1 , . . . , X

∗
k) and

multiplicities (n1, . . . , nk). Analogously, (Y ∗1 , . . . , Y
∗
c ) denotes the unique values in

Y t−1 with multiplicities (m1, . . . ,mc). The mixing proportions are given by

qi,0(U1, U2) ∝ θτ1,0(U1, U2)

∫
X
f(Wi | x)P0(dx),

qi,j(U1, U2) ∝
τni+1,mj (U1, U2)

τni,mj (U1, U2)
f(Wi | X∗i ),

q1
i,j(U1, U2) ∝ τni+1,0(U1, U2)

τni,0(U1, U2)
f(Wi | X∗i ),

q2
i,j(U1, U2) ∝

τ1,mj (U1, U2)

τ0,mj (U1, U2)

∫
X
f(Wi | x)PY ∗j (dx)
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(c) Sample Y t similarly to point (b).

Once a posterior sample for X1:n and Y1:m is collected, relevant quantities of interest can
be approximated, exploiting the independence within W and V given the latent variables.

3.8.2 Simulation study

We consider a simple application with simulated data, in order to understand how in-
ference changes taking into account heterogeneous sources of information. Assume the
following generating mechanism for two independent samples W1:n and V1:m

Wi
i.i.d.∼ N(· | 10, 1), i = 1, . . . , 20,

Vj
i.i.d.∼ N(· | −10, 1), j = 1, . . . , 100.

(3.30)

Supposing only the phenomenon associated to the first sample is of interest, hierarchical
mixtures are considered to make prediction on the unknown density of Wi. The kernel
considered is the one specified in Example 3.9, with known σ2 = 1 and latent mean µ. Four
different approaches for modelling dependence between W and V are devised

1. Exchangeable approach: observations in W and V are supposed to be exchangeable,
inducing the highest positive correlation between Wi and Vj .

2. Independent approach: the sample V is disregarded entirely, that is W and V are as-
sumed to be independent.

3. Hierarchical approach: the dependence between W and V is described by a hierar-
chical Dirichlet process (see Example 3.1). This approach corresponds to a classical
borrowing of information.

4. FuRBI approach: the underlying random probability measures p̃1 and p̃2 have a joint
distribution as specified in Definition 3.1. In particular, we consider the case of equal
weights with distribution on the atoms given as

G0(· | ρ0) = N2 (· | 0, 1, ρ0) , ρ0 ∼ Unif([−1, 1]), (3.31)

whereN2(· | m,σ2
0, ρ0) denotes the bivariate normal distribution with mean vectorm,

common variance σ2
0 and correlation ρ0. It can be proven that under this specification

Corr(Wi, Vj) = 0, so that a priori W and V are marginally uncorrelated.

For the first two cases and the n-FuRBI, the marginal distribution is given by a Dirichlet
process with θ = 1 and P0(·) = N(· | 0, 1); instead for the hierarchical process the con-
centration parameters are fixed in order to match the expected number of different clusters
with the other methods, for a fair comparison. As it was highlighted in Example 3.6, n-
FuRBI with equal jumps lead to the most general setting in terms of achievable correlation
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between samples; moreover, choosing the marginal processes to derive from a Gamma
process, we can achieve any value in the interval (−1, 1), tuning appropriately the concen-
tration parameter θ. Thus, it can be a competitive choice for modelling purposes.

−15 −10 −5 0 5 10 15

0.0

0.1

0.2

0.3

0.4

True

Exch.

Ind.

FuRBI

Hier.
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Figure 3.3: Left: estimated densities for the case with opposite true means. Right: mean
integrated error (computed on a grid) for the four estimates, varying the true mean of V.

The left panel of Figure 3.3 shows the performances of the four methods, after the appli-
cation of the Blocked Gibbs sampler. The exchangeable approach behaves very badly, as
expected, because the two samples have clearly a different distribution. The independent
choice leads to a reasonable estimate, even if it still overestimates the probability mass
around the prior mean (because of the small sample size of the first sample). The hier-
archical estimate is quite good, but our proposal, instead, fits almost perfectly the target
density and seems to exploit the opposite behaviour of the two phenomena: this is clearly
highlighted by the posterior distribution of ρ0 in (3.31), whose approximated mean is close
to −0.9.

One may wonder whether these superior performances follow from the precise specifica-
tion above, with opposite true means. Therefore, we repeated the experiment with the
same formulation of (3.30), with the true mean of V ranging from −16 to 16: the mean
integrated absolute error is depicted in the right panel of Figure 3.3.

It is apparent that the FuRBI approach almost always yields the smallest error, regardless
of the true value. Its performance is close to the exchangeable case only when the two
true means are equal, that is when exchangeability actually holds. The hierarchical process
captures the right dependence when the two means coincide, but can be misled when they
are close; finally, when the second sample is very far from the first one it performs better
than the independent sampler, probably thanks to the different inner clustering structure.
The results are also summarized in Table 3.1.
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Mean of V Exch. Ind. FuRBI Hier.
-15 1.769 0.995 0.225 0.730
-10 1.769 0.995 0.119 0.759
0 1.737 0.995 0.637 0.756
10 0.267 0.995 0.288 0.412
15 1.649 0.995 0.299 0.740

Table 3.1: Mean integrated absolute error associated to the four methods for some values
of the mean of V. The values in bold are the smallest ones for each row.

Thus, FuRBI models seem to be always capable of combining heterogeneous information in
the right way; in particular, at least in this example, they recognize the most useful type of
borrowing of information. Finally, we consider a similar application with three groups, in
order to see whether the n-FuRBIs are able to discern more complex types of dependence.
We assume to observe

Wi
i.i.d.∼ N(· | 10, 1), i = 1, . . . , 20,

Vj
i.i.d.∼ N(· | −10, 1), j = 1, . . . , 20,

Rj
i.i.d.∼ N(· | x, 1), j = 1, . . . , 20,

(3.32)

with x ∈ {−10,−9, . . . , 10}. Then, for each value of x we apply n-FuRBIs with same
weights, as before, but where the atoms are distributed as follows

G0 (·|ρ12, ρ13, ρ23)) = N3

·∣∣∣∣0, 1,
 1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1


 , (3.33)

ρ12, ρ13, ρ23
i.i.d.∼ Unif([−1, 1])

where N3(· | µ0, σ
2,Ψ) denotes a multivariate normal distribution with mean µ0, all the

variances equal to σ2 and correlation matrix Ψ. The posterior medians of ρ12, ρ13 and ρ23

are depicted in figure 3.4, for any value of x.
The results are in line with our intuition: the correlation between the first and second
component is always close to −1 (indeed they have opposite behaviour), while ρ13 and ρ23

vary linearly with x, being positive when the means have the same sign.

3.8.3 Stocks and commodities returns

Data

We collected monthly returns of January 2021 for a sample of 49 stocks portfolios from
the Kenneth R. French’s Data Library (data available at http://mba.tuck.dartmouth.
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Figure 3.4: Posterior median of the correlation (obtained through 100 samples) between the
three unknown means. In black: correlation between the first and second component. In
red: correlation between the first and third component. In green: correlation between the
second and third component.

edu/pages/faculty/ken.french/data_library.html) and for a sample of 55 com-
modities from the Primary Commodity Prices Database of the International Monetary
Fund (data available at https://www.imf.org/en/Research/commodity-prices).

Figure 3.5: Empirical correlation be-
tween average stock return and av-
erage commodity return computed
on a moving window of 12 months
using data from March 2011 to Jan-
uary 2021.

Stocks and commodities exhibit correlation that
largely varies over time ranging from positive to
negative values (see, for instance, Bhardwaj &
Dunsby, 2013, and Figure 3.5). Inference on their
densities is therefore an interesting application of
our model. Indeed, commodities returns contain
useful information to make inference over the dis-
tribution of stocks portfolios; however, in periods of
negative correlation, the classical borrowing of in-
formation may not be appropriate.
The intuitive idea is the following: if the observed
commodities returns outperform our prior guess
and we are in a period of negative correlation, an ap-
propriate model should increase the probability of
observing stocks returns which underperform with
respect the prior guess and vice versa.

Additive FuRBI mixture model

Coherently with Bayesian mixture models, we assume that data come from two mixtures of
normals with unknown mean and variance. Denoting with Wi and Vj the monthly returns
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of respectively stocks and commodities, we have

Wi | p̃1
iid∼
∫
N(· | x, σ2

w) p̃1(dx,dσ2
w)

Vj | p̃2
iid∼
∫
N(· | y, σ2

v) p̃2(dy,dσ2
v)

(p̃1, p̃2) | θ, z,G0 ∼ n-FuRBI(θ, ρ(ds1, ds2), G0)

θ ∼ Gamma(α, β)

(3.34)

The base measure G0 is chosen so that marginal distribution are given by NRMIs with
conjugate Normal-InverseGamma base measure, i.e.

G0(dx,dy, dσ
2
w,dσ

2
v | ρ0) =N2(dx, dy | m,Σ(λ1, λ2, σ

2
w, σ

2
vρ0))

× InvGamma(dσ2
w | α1, β1)× InvGamma(dσ2

v | α2, β2)
(3.35)

with

m = (m1,m2)′ and Σ =

 σ2
w
λ1

ρ0
σw

λ
1/2
1

σv

λ
1/2
2

ρ0
σw

λ
1/2
1

σv

λ
1/2
2

σ2
v
λ2


and we use the following joint underlying Lévy intensity

v(ds1,ds2,dx1, dx2) = {z [ρ(ds1)δ0(ds2)+ρ(ds2)δ0(ds1)]+(1−z) ρ(ds1)δs1(ds2)} θ G0(dx1,dx2),

with
z ∼ U(0, 1).

We name the resulting n-FuRBI additive n-FuRBI, since the series representation of the cor-
responding FuRBI CRMs is given by

µ̃1(·) a.s.=
∑
k≥1

Wkδθ0,k +
∑
k≥1

Jkδθ1,k µ̃2(·) a.s.=
∑
k≥1

Wkδφ0,k +
∑
k≥1

Vkδφ2,k ,

where (θ0,k, φ0,k)
i.i.d∼ G0, θ1,k

i.i.d∼ P0 and φ2,k
i.i.d∼ P0.

When G0 is degenerate on the main diagonal (i.e. ρ0 = 1), one retrieves GM-dependent
completely random measure (Lijoi et al., 2014a,b; Lijoi & Nipoti, 2014). In order to obtain
two Dirichlet processes marginally we set ρ(s) = s−1e−s, so that

β =
1

1 + θ

and
γ = (1− z) θ

(1 + θ)2 3F2(θ − θ z + 2, 1, 1; θ + 2, θ + 2; 1)

where 3F2 is the generalized hypergeometric function. In the choice of the hyperparame-
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Panels (a-c) contains density estimates for stocks returns, Panels (d-f) contains
density estimates for commodities returns. Panels (a) and (d) are obtained through the
exchangeable approach, Panels (b) and (e) are obtained using additive FuRBI, Panels (c)
and (f) are obtained with the independent approach.

ters, we try to mimick the situation in which prior knowledge on the marginal distribution
can be elicited, for instance through outlooks of the markets. We use returns in the previ-
ous month as proxy of prior information and, therefore, we set m1 and m2 to the empirical
average returns of the two groups in December 2020, which are respectively 5.8591 and
3.9731. Moreover, we assume that no information is available on the correlation and use a
uniform prior over [−1, 1] for ρ0. However, note that eventual information about the corre-
lation could be incorporated through a more-informative prior on the parameter ρ0. More-
over after standardizing the data, we set the remaining hyperparameters to λ1 = λ2 = 1,
α1 = α2 = 2 and β1 = β2 = 4. We perform 10 000 iterations of the marginal sampler
algorithm and discard the first half as burnin. On the same data we also estimate densities
using the exchangeable and independent approach described in the previous section.

Exch FuRBI Ind
ALCPO -1.4553 -1.3168 -1.3752
MLCPO -1.1672 -1.1496 -1.2331

Table 3.2: ALCPO and MLCPO under the
three models. The values in bold are the high-
est for each row.

The results of the analysis are displayed in
Figure 3.6. The model employing n-FuRBIs
produces the density estimates that most
resemble the empirical distributions (see,
panel (b) and (e) of Figure 3.6). Since we
use a non-informative prior over the corre-
lation ρ0, intensity and direction of the bor-
rowing of information is inferred from the
data, leading to a reinforcement of the in-
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3.8. ILLUSTRATION

formation coming from each sample. To compare the performances of the three models we
resort to the conditional predictive ordinates (CPOs) statistics (see, for example, Gelfand
et al., 1992; Barrios et al., 2013). Essentially, for each value i, we train the model without
the i-th observation and compute the predictive density at the observed point.

Figure 3.7: Boxplots of the logarithmic CPOs.

For the first sample it reads CPOw
i = f̃(wi |

w−i,v) for i = 1, . . . , n and analogously
for the second sample, where w and v de-
note the observed returns for respectively
stocks and commodities. Table 3.2 contains
the average logarithmic CPO (ALCPO) and
the median logarithmic CPO (MLCPO) in
the overall sample. The distribution of the
logarithmic CPO is depicted in Figure 3.7.
Clearly higher values correspond to a bet-
ter performance and the n-FuRBI turns out
to be the best approach.
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Chapter 4

Invariant Dependent Processes for
Model Selection

In this fourth chapter, we propose a new class of dependent processes, namely invariant
dependent processes, that as n-FuRBIs in Chapter 3, are not mSSPs. This chapter has a more
applied flavor than the previous ones and a specific motivating application. Invariant de-
pendent processes are introduced here in order to define a flexible prior distribution for
the error terms of the model considered here. The ultimate aim is to perform model se-
lection to detect the relationship between hypertensive disorders diagnoses and cardiac
dysfunctions in pregnant women. The outline of the chapter is as follows. In the first
two sections we introduce the motivating application, the framework, and the main ideas
on which this chapter is based. In Section 4.3 we introduce the model, which makes use
of invariant dependent processes obtained through a hierarchical prior structure for sym-
metric distributions (Section 4.3.2). In Section 4.4 we derive the prior law of the random
partitions induced by the model, key ingredient for the Gibbs sampling scheme devised
in Section 4.5. In Section 4.6, we present two alternative priors for the upper clustering of
hypertensive disorders, which will be used for comparisons. In Section 4.7, we first present
a series of simulation studies that highlight the behaviour of the model before applying it
to obtain our results on cardiac dysfunction in hypertensive disorders. Section 4.8 contains
some concluding remarks.

4.1 Motivating application

Hypertensive disorders of pregnancy are a class of high blood pressure disorders that occur
during the second half of pregnancy, which include gestational hypertension, preeclampsia
and severe preeclampsia. They are characterized by a diastolic blood pressure higher than
90 mm Hg and/or a systolic blood pressure higher than 140 mm Hg and they are often
accompanied by proteinuria. These disorders affect about 10% of pregnant women around
the world, with preeclampsia occurring in 2–8% of all pregnancies (Timokhina et al., 2019).
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These disorders represent one of the leading causes of maternal and fetal morbidity and
mortality, contributing to 7–8% of maternal death worldwide (Dolea & AbouZahr, 2003;
Shah et al., 2009; McClure et al., 2009). The World Health Organization estimates that the
incidence of preeclampsia is seven times higher in developing countries than in devel-
oped countries. However, the occurrence of these diseases appears under-reported in low
and middle income countries, implying that the true incidence is unknown (Igberase &
Ebeigbe, 2006; Malik et al., 2019). While there is evidence that hypertensive disorders of
pregnancy are related with the development of cardiac dysfunctions both in the mother
and in the child (Bellamy et al., 2007; Davis et al., 2012; Ambrožic et al., 2020; Garcia-
Gonzalez et al., 2020; Aksu et al., 2021; deMartelly et al., 2021), there is no common agree-
ment on the relation between the severity of hypertension and cardiac dysfunction (Tata-
pudi & Pasumarthy, 2017b) and echocardiography is not included in baseline evaluation of
hypertensive disorders of pregnancy. Further investigations on these disorders are needed,
especially for developing countries, where women often give birth at a younger age with
respect to developed countries.
The goal of this chapter is to detect which cardiac function is altered and under which
hypertensive disorders by relying on a principled Bayesian nonparametric approach. An
interesting case-control study to explore the relation between cardiac dysfunction and hy-
pertensive disorders is provided by Tatapudi & Pasumarthy (2017a), where the measures
of ten different cardiac function indexes were recorded in four groups of pregnant women
in India. Groups of women are characterized by different hypertensive disorder diagnoses,
that are naturally ordered based on the severity of the diagnosed disorder: healthy (C), ges-
tational hypertension (G), mild preeclampsia (M) and severe preeclampsia (S). Hyperten-
sive diagnoses are used as identifiers for what we call populations of patients and we refer
to cardiac function indexes also with the term response variables. For each response vari-
able we want to determine a partition of the four populations of patients. This amounts to
identifying similarities between different hypertensive disorders, with respect to each car-
diac index. Supposing, for instance, that the selected partition assigns all the populations
to the same cluster, one can conclude that no alteration is shown for the corresponding
cardiac index across different hypertensive diseases.

4.2 Challenges, main idea and related works

Our goal of identifying a partition of the four patients’ populations for each of the ten
responses can be rephrased as a problem of multiple model selection: we want to select
the most plausible partition for each cardiac index. Frequentist hypothesis testing does
not allow to deal with more than two populations in a straightforward way, since pairwise
comparisons may lead to conflicting conclusions. Conversely, a Bayesian approach yields
the posterior distribution on the space of partitions, which can be used for simultaneous
comparisons. Moreover, the presence of M = 10 jointly tested cardiac indexes requires to
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perform model selection repeatedly ten times. Once again, a Bayesian approach seems to
be preferred, because, as observed for instance by Scott & Berger (2006), it does not require
the introduction of a penalty term for multiple comparison, thanks to the prior distribution
build-in penalty.

Here we design a Bayesian nonparametric model, that is tailored to deal with both a collec-
tion of populations and the multivariate information of the response variables, while pre-
serving the typical flexibility of nonparametric models and producing easily interpretable
results. When applied to the dataset on transthoracic echocardiography results for a co-
hort of Indian pregnant women in Section 4.7, our model effectively identifies modified
cardiac functions in hypertensive patients compared to healthy subjects and progressively
increased alterations with the severity of the disorder, in addition to other more subtle
findings.

The observed data Xi,j,m represent the measurement of the m–th response variable (car-
diac index) on the i–th individual (pregnant woman) in the j–th population (hyperten-
sive disorder) and, as in standard univariate ANOVA models, they are assumed to be
partially exchangeable across disorders. As explained in Section 1.4, this means that for
every m ∈ {1, . . . ,M}, the law of ( (Xi,1,m)i≥1, . . . , (Xi,J,m)i≥1) is invariant with respect to
permutations within each sequence of random variables, namely for any positive integers
n1, . . . , nJ

( (Xi,1,m)n1
i=1, . . . , (Xi,J,m)nJi=1)

d
= ( (Xσ1(i),1,m)n1

i=1, . . . , (XσJ (i),J,m)nJi=1)

for all permutations σj of (1, . . . , nj), with j = 1, . . . , J . This is a natural generalization of
exchangeability to tackle heterogeneous data and, by de Finetti’s representation theorem
(Theorem 1.10), it amounts to assuming the existence of a collection of (possibly dependent)
random probability measures {πj,m : j = 1, . . . , J m = 1, . . . ,M} such that

Xi,j,m | πj,m
i.i.d.∼ πj,m i = 1, . . . , nj

Hence, for any two populations j 6= j′, homogeneity corresponds to πj,m = πj′,m (almost
surely). However, a reliable assessment of this type of homogeneity is troublesome when
having just few patients per diagnosis, as it happens in the mild preeclampsia subsam-
ple. Not rely on simplifying parametric assumptions, in fact, a small sub-sample size may
not be sufficiently informative to infer equality of entire unknown distributions. To over-
come this issue, without introducing parametric assumptions, we resort to an alternative
weaker notion of homogeneity between populations j and j′: we only require the condi-
tional means of the two populations to (almost surely) coincide

E(Xi,j,m | πj,m) = E(Xi,j′,m | πj′,m). (4.1)

According to this definition, the detection of heterogeneities in cardiac function indexes
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amounts to inferring which cardiac indexes have means that differ across diagnoses, as it
is done in standard parametric ANOVA models. Besides clustering populations according
to (4.1), it is also of interest to cluster patients, both within and across different groups,
once the effect of the specific hypertensive disorder is taken into account. This task may be
achieved by assuming a model that decomposes the observations as

Xi,j,m = θj,m + εi,j,m εi,j,m|(ξi,j,m, σ2
i,j,m)

ind∼ N(ξi,j,m, σ
2
i,j,m) (4.2)

and the ξi,j,m have a symmetric distribution around the origin, in order to ensureE(ξi,j,m) =

0. In view of this decomposition, we will let θj,m govern the clustering of populations while
the (ξi,j,m, σ

2
i,j,m)’s determine the clustering of individuals, namely patients, after remov-

ing the effect of the specific hypertensive disorder. In order to pursue this, for each cardiac
index m, we will specify a hierarchical process prior for (ξi,j,m, σ

2
i,j,m) that is suited to infer

the clustering structure both within and across different hypertensive disorders for a spe-
cific cardiac index. In particular, we will deploy a novel instance of hierarchical Dirichlet
process, introduced in Teh et al. (2006), that we name symmetric, to highlight its centering
in 0.
Early examples of Bayesian nonparametric models for ANOVA can be found in Cifarelli
& Regazzini (1978) and Muliere & Petrone (1978), while the first popular proposal is due
to De Iorio et al. (2004), uses the dependent Dirichlet process (DDP) of (MacEachern, 2000)
and is therefore termed ANOVA-DDP. This model is mainly tailored to estimate popu-
lations’ probability distributions, while we draw inferences over clusters of populations’
means and obtain estimates of the unknown distributions as a by-product. Moreover, the
ANOVA-DDP of De Iorio et al. (2004) was not introduced as a model selection procedure.
A popular Bayesian nonparametric model, that does cluster populations and can be used
for model selection, is the nested Dirichlet process of Rodriguez et al. (2008). As shown in
Camerlenghi et al. (2019a), such a prior is biased towards homogeneity, in the sense that
even a single tie between populations j and j′, namely Xi,j,m = Xi′,j′,m for some i and i′,
entails πj,m = πj′m (almost surely). In order to overcome such a drawback, a novel class of
nested, and more flexible, priors has been proposed in Camerlenghi et al. (2019a). See also
Soriano & Ma (2017) for related work. Interesting alternatives that extend the analysis to
more than two populations can be found in Christensen & Ma (2020), Lijoi et al. (2020) and
in Beraha et al. (2021). Another similar proposal is the one by Gutiérrez et al. (2019), whose
model identifies differences over cases’ distributions and the control group. These models
imply that two populations belong to the same cluster if they share the entire distribution.
However, as already mentioned, distribution-based clustering is not ideal when dealing
with scenarios as the one of hypertensive dataset. Further evidence will be provided in
Section 4.7.1, through simulation studies. In addition, note that all these contributions deal
with only one response variable and would need to be suitably generalized to fit the setup
of this chapter. As far as the contributions treating multiple response variables are con-
cerned, uses of nonparametric priors for multiple testing can be found, for instance, in
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Gopalan & Berry (1998), Do et al. (2005), Dahl & Newton (2007), Guindani et al. (2009),
Martin & Tokdar (2012) and more recently in Cipolli et al. (2016), who propose an approx-
imate finite Pólya tree multiple testing procedure to compare two-samples’ locations, and
in Denti et al. (2020). However, in all these contributions, models are developed directly
over summaries of the original data (e.g. averages, z-scores) and, as such, do not allow to
draw any inference on the entire distributions and clusters of subjects.

4.3 The Bayesian nonparametric model

The use of discrete nonparametric priors for Bayesian model-based clustering has become
standard practice. The DP (Ferguson, 1973) is the most popular instance, and clustering
is typically addressed by resorting to the mixture model described in Section 1.2.2, which
with our data structure amounts to

Xi,j,m|ψi,j,m
ind∼ k(Xi,j,m;ψi,j,m), ψi,j,m|p̃j,m

ind∼ p̃j,m

for m = 1, . . . ,M , j = 1, . . . , J and i = 1, . . . , nj . Here k( · ; · ) is some kernel and the
p̃j,m’s are discrete random probability measures. Hence, the ψi,j,m’s may exhibit ties. The
model specification for p̃j,m will be tailored to address the following goals: (i) cluster the J
probability distributions based on their means; (ii) cluster the observationsXi,j,m according
to the ties induced on the ψi,j,m’s by the p̃j,m’s for a given fixed j and across different j’s.
These two issues will be targeted separately: we first design a clustering scheme for the
populations, through the specification of a DP on the means of the Xi,j,m’s and, then, we
cluster the data using a hierarchical DP having a specific invariance structure that ideally
suited to the application at hand.

4.3.1 The prior on disease–specific locations

As a model for the observations we consider a nonparametric mixture of Gaussian distri-
butions specified as

Xi,j,m | (θm, ξm,σ2
m)

ind∼ N(θj,m + ξi,j,m, σ
2
i,j,m) (4.3)

where θm = (θ1,m, . . . , θJ,m), ξm = (ξ1,1,m, . . . , ξ1,n1,m, ξ2,1,m, . . . , ξnJ ,J,m), with a similar
definition for the vector σ2

m, and N(µ, σ2 ) denotes a normal distribution with mean µ and
variance σ2. The assumption in (4.3) clearly reflects (4.2). Moreover, in order to account for
the two levels of clustering we are interested in, we will assume that

(θ1, . . . ,θM ) ∼ P, (ξi,j,m, σ
2
i,j,m) | q̃j,m

i.i.d.∼ q̃j,m (i = 1, . . . , nj) (4.4)
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where q̃1,m, . . . , q̃J,m are discrete random probability measures independent from (θ1, . . . ,θM ).
Thus, the likelihood corresponds to

M∏
m=1

J∏
j=1

nj∏
i=1

1

σi,j,m
ϕ
(xi,j,m − θj,m − ξi,j,m

σi,j,m

)
q̃j,m(dξi,j,m,dσi,j,m) (4.5)

with ϕ denoting the standard Gaussian density. Relevant inferences can be carried out if
one is able to marginalize this expression with respect to both (θ1, . . . ,θM ) and (q̃1,m, . . . , q̃J,m)

for each m = 1, . . . ,M .
This specification allows to address the model selection problem in the following way. If
Mm stands for the space of all partitions of the J populations for the m-th cardiac function
index, then Mm = {Mm

b : b = 1, . . . , card(PJ)} where PJ is the collection of all possible
partitions of [J ] = {1, . . . , J}. In our specific case, J = 4 and card(PJ) = 15, thus we have
15 competing models per cardiac index. Each competing model corresponds to a specific
partition in Mm. In particular, the partition arises from ties between the population specific
means in θm and, hence, the distribution P in (4.4) needs to associate positive probabilities
to ties between the parameters within the vector θm, for each m = 1, . . . ,M .
Let us start considering as distribution P a well-known effective clustering prior, i.e. a
mixture of DPs in the spirit of Antoniak (1974), namely

θj,m | p̃m
i.i.d.∼ p̃m j = 1, . . . , J

p̃m | ω
i.i.d.∼ DP(ω,Gm) m = 1, . . . ,M

ω ∼ pω

(4.6)

where DP(ω,Gm) denotes the DP with concentration parameter ω and non-atomic baseline
probability measure Gm and pω is a probability measure on R+. The discreteness of the
DP implies the presence (with positive probability) of ties within the vector of locations
θm associated to a certain cardiac index m, as desired. The ties give rise to a random
partition: as shown in Antoniak (1974), the probability of observing a specific partition of
the elements in θm consisting of k ≤ J distinct values with respective frequencies n1, . . . , nk
coincides with

Π
(J)
k (n1, . . . , nk) =

ωk

(ω)J

k∏
i=1

(ni − 1)! (4.7)

where (ω)J = Γ(ω + J)/Γ(ω). The use of a shared concentration parameter over (4.7) to
address multiple model selection has been also explored in Moser et al. (2021), where they
cluster parameters in a probit model. When there is no prior information available on com-
peting partitions, the advantages of using (4.7) as prior for model selection are that, firstly,
it induces borrowing of strength across diagnoses and, secondly, being ω random, it gen-
erates borrowing of information across cardiac indexes, improving the Bayesian learning
mechanism. Moreover, these two features can also be interpreted from a frequentist point
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(a) (b)

Figure 4.1: Changes in the prior odds for varying J and M, for fixed ω and random ω. The
simple model is the one corresponding to no modification of cardiac indexes under any
diagnosis, the complex is the one of one modification in corresponding of one diagnosis
for all cardiac indexes and the prior used for ω is a Gamma prior.

of view in terms of desirable penalties for the model selection problem. In fact, for any
fixed ω ∈ [0, 1], J and M , the DP penalizes more complex models since, the prior prob-
ability of a model in Mm decreases while the associated k in (4.7) increases, inducing a
so-called Ockham’s-razor penalty. At the same time, the procedure penalizes for the mul-
tiplicity of the model selections that are performed. This second type of penalty has to
be intended in the following way: while J and/or M increase, the prior odds change in
favor of less complex models (see Figure 4.1). For more details on this, see Scott & Berger
(2010). Summing up, the mixture of DPs automatically induces a prior distribution on
{Mm : m = 1, . . . ,M}, provided by (4.7) and the prior on ω, and it presents desirable prop-
erties for model selection purposes that can be interpreted either in terms of borrowing of
information or as penalties.

However, in the analysis of hypertensive disorders, some prior information on competing
models is available, and this is not yet incorporated in (4.7). In fact, as already mentioned,
there is a natural order of the diagnoses, which is given by the severity of the disorders,
i.e. C, G, M, S. Partitions that do not respect this order, e.g. {{C, S}{G}, {M}}, should
reasonably be excluded from the support of the prior. Thus, we consider a prior over Mm

that associates zero probability to partitions that do not respect the natural order of the
diagnoses and a probability proportional to that in (4.7) to the remaining partitions, i.e.

P(Mm
b | ω) ∝

{
Π

(J)
k (n1, . . . , nk) if Mm

b is compatible with the natural order

0 otherwise
(4.8)
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This amounts to a distribution P for (θ1, . . . ,θM ) given by

(θ1,m, . . . , θJ,m) | ω ind∼ Pω,Gm m = 1, . . . ,M

ω ∼ pω
(4.9)

where Pω,Gm is the distribution obtained sampling a partition accordingly to (4.8) and as-
sociating to each cluster a unique value sampled from Gm. Using (4.9) as prior for the
disease-specific locations, we preserve the desirable properties of the mixture of DPs men-
tioned before, while incorporating prior information on the severity of the diseases.
As detailed in the next section, we further consider random probability measures q̃j,m that
satisfy the symmetry condition

q̃j,m(A×B) = q̃j,m((−A)×B) a.s. (4.10)

for any A and B. This condition is crucial as it ensures that the parameters θj,m, for j =

1, . . . , J and m = 1, . . . ,M , in (4.3) are identified, namely E(Xi,j,m | θm, q̃j,m) = θj,m
with probability one. This identifiability property is crucial to make inference over the
location parameters θm’s. Similar model specifications for discrete exchangeable data have
been proposed and studied in Dalal (1979b), Doss (1984), Diaconis & Freedman (1986) and
Ghosal et al. (1999), of which (4.5) represents a generalization to density functions and
partially exchangeable data.

4.3.2 The prior for the error terms

While the clustering of populations is governed by (4.8), we use a mixture of hierarchical
discrete processes for the error terms. This has the advantage of modeling the clustering of
the observations, both within and across different samples, once one has taken into account
the disease-specific effects. This clustering structure allows to model heterogeneity across
patients in a much more realistic way with respect to standard ANOVA models based on
assumption of normality. Cardiac indexes may be influenced by a number of factors that
are not directly observed in the study, such as pre-existing conditions (Hall et al., 2011)
and psychosocial factors (Pedersen et al., 2017). These unobserved relevant factors may
be shared across patients with the same or a different diagnosis and may also result in
outliers. To take into account this latent heterogeneity of the data, we introduce the hierar-
chical symmetric DP that satisfies the symmetry condition in (4.10) and, moreover, allows
to model heterogeneous data similarly to the hugely popular hierarchical DP (Teh et al.,
2006).
The basic building block of the proposed prior is the invariant Dirichlet process, which
was introduced for a single population (J = 1) in an exchangeable framework by Dalal
(1979a). Such a modification of the DP satisfies a symmetry condition, in the sense that it
is a random probability measure that is invariant with respect to a chosen group of trans-
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formations G. A more formal definition and detailed description of the invariant DP can
be found in Section 1.2.3. For our purposes it is enough to consider the specific case given
by the symmetric Dirichlet process, that can be constructed through a symmetrization of a
Dirichlet process. Consider a non-atomic probability measure P0 on R and assume, without
loss of generality, that P0 is symmetric about 0. Let Q̃0 ∼ DP(α, P0). If

Q̃(A) =
Q̃0(A) + Q̃0(−A)

2
∀A ∈ B(R) (4.11)

where −A = {x ∈ R : −x ∈ A}, then Q̃ is symmetric about 0 (almost surely) and termed
symmetric DP, in symbols Q̃ ∼ s-DP(α , P0). Notice that P0 does not need to be symmetric,
however requiring P0 to be symmetric is without lost of generality and with the advantage
of P0 being an interpretable parameter of the prior: P0, if symmetric, is the expected value
of Q̃. The random probability measure Q̃ is the basic building block of the hierarchical
process that we use to model the heterogeneity of the error terms across different popula-
tions, j = 1, . . . , J , in such a way that clusters identified by the unique values can be shared
within and across populations. Such a prior is termed symmetric hierarchical Dirichlet process
(s-HDP) and is described as

q̃j,m | γj,m, q̃0,m
ind∼ s-DP(γj,m, q̃0,m)

q̃0,m | αm
ind∼ s-DP(αm, P0,m)

(4.12)

where γj,m and αm are positive parameters and P0,m is a non-atomic probability distri-
bution symmetric about 0. We use the notation (q̃1,m, . . . , q̃J,m) ∼ s-HDP(γm, αm, P0,m),
where γm = (γ1,m, . . . , γj,m). This definition clearly ensures the validity of (4.10). A graph-
ical model representation of the over-all proposed model is displayed in Figure 4.2.
Still referring to the decomposition of the observations into disease-specific locations and
an error term, i.e. Xi,j,m = θj,m + εi,j,m, it turns out that the εi,j,m’s are from a symmet-
ric hierarchical DP mixture (s-HDP mixture) with a normal kernel. Hence, the patient’s
clusters are identified through the εi,j,m, which, according to (4.3), are conditionally inde-
pendent from a N(ξi,j,m, σ

2
i,j,m) given (ξi,j,m, σ

2
i,j,m). The choice of the specific invariant DP

is aimed at ensuring that E(εi,j,m|q̃j,m) = 0. The clusters identified by the s-HDP mixture
can be interpreted as representing common unobserved factors across patients, once the
disease-specific locations have been accounted for. Indeed, for any pair of patients, we
may consider the decomposition Xi,j,m −Xi′,j′,m = ∆

(m)
θ + ∆

(m)
ξ + (ei,j,m − ei′,j′,m) where

∆
(m)
θ = θj,m − θj′,m, ∆

(m)
ξ = ξi,j,m − ξi′,j′,m and ei,j,m and ei′,j′,m are independent and

normally distributed random variables with zero mean and variances σ2
i,j,m and σ2

i′,j′,m,
respectively.
Hence, patients’ clustering reflects the residual heterogeneity that is not captured by the
disease-specific component ∆

(m)
θ and are related to the subject-specific locations ∆

(m)
ξ and

to the zero-mean error component (ei,j,m−ei′,j′,m). In view of this interpretation, using a s-
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θmω

Xi,j,m

εi,j,m

q̃j,m

q̃0,m αm

γj,m

Figure 4.2: Graphical representation of the model. Each node represents a random variable and
each rectangle denotes conditional i.i.d. replications of the model within the rectangle.

HDP mixture over error terms offers a three-fold advantage. Firstly, the presence of clearly
separated clusters of patients within and across populations will indicate the presence of
unobserved relevant factors which affect the cardiac response variables. Secondly, single
patients with very low probabilities of co-clustering with all other subjects will have to be
interpreted as outliers. Finally, the estimated clustering structure can also be used to check
whether the relative effect of a certain disease (with respect to another) is fully explained
by the corresponding ∆

(m)
θ . To clarify this last point consider two diseases: if the posterior

co-clustering probabilities among patients sharing the same disease are different between
the two populations, this will indicate that different diagnoses not only have an influence
on disease-specific locations (which is measured by ∆

(m)
θ ), but they also have an impact on

the shape of the distribution of the corresponding cardiac index. More details on this can
be found in Section 4.7.1.

4.4 Marginal distributions and random partitions

As emphasized in the previous sections, ties among the θj,m’s and the (ξi,j,m, σ
2
i,j,m)’s are

relevant for inferring the clustering structure both among the populations (hypertensive
diseases) and among the individual units (patients). Indeed, for each m (cardiac index)
they induce a random partition that emerges as a composition of two partitions generated
respectively by the prior in (4.9) and the s-HDP. The laws of these random partitions are not
only crucial to understand the clustering mechanism, but also necessary in order to derive
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P[{θ1, θ2, θ3, θ4}] ∝ 3!

P[{θ1, θ2, θ3}, {θ4}] ∝ 2!ω

P[{θ1, θ2}, {θ3, θ4}] ∝ ω
P[{θ1, θ2}, {θ3}, {θ4}] ∝ ω2

P[{θ1}, {θ2, θ3, θ4}] ∝ 2!ω

P[{θ1}, {θ2, θ3}, {θ4}] ∝ ω2

P[{θ1}, {θ2}, {θ3, θ4}] ∝ ω2

P[{θ1}, {θ2}, {θ3}, {θ4}] ∝ ω3

P[θ1 = θ2 = θ3]
∝ 2!ω + 3!

P[θ1 = θ2 6= θ3]
∝ ω2 + ω

P[θ1 6= θ2 = θ3]
∝ ω2 + 2!ω

P[θ1 6= θ2 6= θ3]
∝ ω3 + ω2

P[θ1 = θ2]
∝ ω2 + 3ω + 3!

P[θ1 6= θ2]
∝ ω3 + 2ω2 + 2ω

Figure 4.3: A priori partitions’ probabilities joint (on the left) and marginals

posterior sampling schemes. In this section the law of the partitions are derived and used
to compute the predictive distributions that, jointly with the likelihood, determine the full
conditionals of the Gibbs sampler in the next section. To reduce the notational burden, in
this and the following section, we remove the dependence of observations and parameters
on the specific response variable m and denote with φi,j the pair (ξi,j , σ

2
i,j) and with φ the

collection (φ1,1, . . . , φ1,n1 , φ2,1, . . . φnJ ,J).

Conditionally on ω, the law of the partition in (4.8) leads to the following predictive distri-
bution for the disease-specific locations

θj |ω, θ1, . . . , θj−1 ∼ aj(ω, θ1, . . . , θj−1) δθj−1
+ (1− aj(ω, θ1, . . . , θj−1))G

where

aj(ω, θ1, . . . , θj−1) =

∑
(∗j) Π

(J)
k (n1, . . . , nk)∑

(∗) Π
(J)
k (n1, . . . , nk)

(4.13)

where the sum at the denominator runs over the set of partitions compatible to the ties in
(θ1, . . . , θj−1) and the one at the numerator runs over a subset of the same partitions where
also θj = θj−1.

We recall that the prior over partitions is provided by

P(Mm
b | ω) ∝

{
ωk−1

∏k
i=1(ni − 1)! if Mm

b is compatible with the natural order

0 otherwise

where k is the number of distinct clusters accordingly to the partition Mm
b and n1, . . . , nk

are the clusters’ respective frequencies. Thus, being J = 4, one obtains the probabili-
ties in Figure 4.3, starting from which it is possible to compute the joint distribution for
(θ1,m, . . . , θ4,m) conditional on ω
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θ1,m | ω ∼ Gm

θ2,m | θ1,m, ω ∼
ω2 + 3ω + 6

(ω + 2)(ω2 + ω + 3)
δθ1,m +

ω3 + 2ω2 + 2ω

(ω + 2)(ω2 + ω + 3)
Gm

θ3,m | θ1,m, θ2,m, ω ∼

{
2ω+6

ω2+3ω+6
δθ2,m + ω2+ω

ω2+3ω+6
Gm if θ1,m = θ2,m

ω+2
ω2+2ω+2

δθ2,m + ω2+ω
ω2+2ω+2

Gm if θ1,m 6= θ2,m

θ4,m | θ1,m, θ2,m, θ3,m, ω


3

ω+3δθ3,m + ω
ω+3Gm if θ1,m = θ2,m = θ3,m

2
ω+2δθ3,m + ω

ω+2Gm if θ1,m 6= θ2,m = θ3,m

1
ω+1δθ3,m + ω

ω+1Gm otherwise

Moving to second-level partitions induced by the s-HDP, we recall that the key concept
for studying random partitions on multi-sample data is the partially exchangeable partition
probability function (pEPPF). See, e.g., Lijoi et al. (2014a) and Camerlenghi et al. (2019b).
The pEPPF returns the probability of a specific multi-sample partition and represents the
appropriate generalization of the well-known single-sample EPPF, which in the DP case
corresponds to (4.7). Discreteness of the s-HDP (q̃1, . . . , q̃m) in (4.12) induces a partition
of the elements of φ into equivalence classes identified by the distinct values. Taking into
account the underlying partially exchangeable structure, such a random partition is char-
acterized by the pEPPF

Π̃
(N)
k (n1, . . . ,nJ) = E

∫
Φk

J∏
j=1

k∏
h=1

q̃
nj,h
j,m (dφi)

 (4.14)

where nj = (nj,1, . . . , nj,k) are non-negative integers, for any j = 1, . . . , J , such that nj,h
is the number of elements in φ corresponding to population j and belonging to cluster
h. Thus

∑J
j=1 nj,h ≥ 1 for any h = 1, . . . , k,

∑k
h=1 nj,h = nj and

∑k
h=1

∑J
j=1 nj,h = N .

The determination of probability distributions of this type is challenging and only recently
the first explicit instances have appeared in the literature. See e.g., Lijoi et al. (2014a),
Camerlenghi et al. (2019a) and Camerlenghi et al. (2019b). With respect to the hierarchical
case considered in Camerlenghi et al. (2019b), the main difference is that here we have to
take into account the specific structure (4.11) of the q̃j,m. The almost sure symmetry of
the process generates a natural random matching between sets in the induced partition.
Therefore, instead of studying the marginal law in (4.14), we derive the joint law of the
partition and of the random matching. Formally, consider a partition {A+

1 , A
−
1 , . . . , A

+
k , A

−
k }

of φ, such that, for h = 1, . . . , k, all the elements in A+
h belong to R+ × R+, all the elements

in A−h belong to R− × R+ and, if φi,j ∈ A+
h and φi′,j′ ∈ A−h , then the element-wise absolute
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φ∗∗
1 −φ∗∗

1 φ∗∗
2 −φ∗∗

2 φ∗∗
3 −φ∗∗

3 φ∗∗
1 −φ∗∗

1

φ1,1 φ2,1

φ3,1

φ4,1

φ5,1φ6,1φ7,1

φ∗∗
3 −φ∗∗

3 φ∗∗
1 −φ∗∗

1 φ∗∗
4 −φ∗∗

4 φ∗∗
5 −φ∗∗

5

φ4,2 φ2,2

φ3,2

φ5,2 φ6,2φ7,2

Figure 4.4: Chinese restaurant franchise representation of the symmetric hierarchical DP
for J = 2 populations. Each circle represents a table.

values of φi,j and φi′,j′ are equal. Denote with n+
j,h the number of elements inA+

h ∩{φi,j , i =

1, . . . , nj} and with n−j,h the number of elements inA−h ∩{φi,j , i = 1, . . . , nj}. The probability
of observing {A+

1 , A
−
1 , . . . , A

+
k , A

−
k } is

≈
Π

(N)
k (n+

1 ,n
−
1 , . . . ,n

+
J ,n

−
J ) = E

∫
Φk

J∏
j=1

k∏
h=1

q̃j,m
n+
j,h+n−j,h(dφ)

 (4.15)

with n+
j = (n+

j,1, . . . , n
+
j,k). As for the determination of (4.15), a more intuitive understand-

ing may be gained if one considers its corresponding Chinese restaurant franchise (CRF)
metaphor, which displays a variation of both the standard Chinese restaurant franchise of
Teh et al. (2006) and the skewed Chinese restaurant process of Iglesias, Orellana & Quin-
tana (2009). Figure 4.4 provides a graphical representation. The scheme is as follows: there
are J restaurants sharing the same menu and the customers are identified by their choice
of φi,j but, unlike in the usual CRF, at each table two symmetric dishes are served. Denote
with φ∗t,j = (ξ∗t,j , σ

2∗
t,j) and −φ∗t,j = (−ξ∗t,j , σ2∗

t,j) the two dishes served at table t in restaurant
j, with φ∗∗h = (ξ∗∗h , σ

∗∗2
h ) and −φ∗∗h = (−ξh, σ∗∗2h ) the h-th pair of dishes in the menu, with

n+
j,h the number of customers in restaurant j eating dish φ∗∗h , and with n−j,h the number of

customers in restaurant j eating dish −φ∗∗h . This means that two options are available to
a customer entering restaurant j: she/he will either sit at an already occupied table, with
probability proportional to the number of customers at that table or will sit at a new table
with probability proportional to the concentration parameter γj . In the former case, the
customer will choose the dish φ∗t,j with probability 1/2 and −φ∗t,j otherwise. In the latter
case, the customer will eat a dish served at another table of the franchise with probability
proportional to half the number of tables that serve that dish, or will make a new order
with probability proportional to the concentration parameter α. In view of this scheme, the
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probability in (4.15) turns out to be

≈
Π

(N)
k (n+

1 , . . . ,n
−
J ) = 2−N Π̄

(N)
k (n+

1 + n−
1 , . . . ,n

+
J + n−

J )

and Π̄
(N)
k on the right-hand-side is the pEPPF of the hierarchical DP derived in Camer-

lenghi et al. (2019b), namely

Π̄
(N)
k (n1, . . . ,nk) =

(
J∏
j=1

∏k
i=1(γj)nj,h
(γj)nj

) ∑
`

αk

(α)|`|

k∏
h=1

(`•,h − 1)!
J∏
j=1

P (Knj,h = `j,h)

where each sums runs over all `j,h in {1, . . . , nj,h}, if nj,h ≥ 1, and equals 1 if nj,h = 0,
whereas `•,h =

∑J
j=1 `j,h and |`| =

∑J
j=1

∑k
h=1 `j,h. Note that the latent variable `j,h is the

number of tables in restaurant j serving the h-th pair of dishes. Moreover,Knj,h is a random
variable denoting the number of distinct clusters, out of nj,h observations generated by a
DP with parameter γj and diffuse baseline P0 and it is well-known that

P(Knj,h = `j,h) =
γ
`j,h
j

(γj)nj,h
|s(nj,h, `j,h)|

where |s(nj,h, `j,h)| is the signless Stilring number of the first kind. In view of this, one can
deduce the predictive distribution

P(φnj+1,j ∈ · |φ) =
γj

i− 1 + γj

∑
`

α

|`|+ α
π(` |φ)P0(·)

+
k∑

h=1

[
n+
j,h + n−j,h
nj + γj

+
γj

nj + γj

∑
`

`•,h
|`|+ α

π(` |φ)

](
δφ∗∗h (·) + δ−φ∗∗h (·)

2

)

where π(` |φ) is the posterior distribution of the latent variables `j,h’s and reads

π(` |φ) ∝ αk

(α)|`|

k∏
h=1

(`•,h − 1)!
J∏
j=1

γ
`j,h
j

(γj)n+
j,h+n−j,h

|s(n+
j,h + n−j,h, `j,h)|1{1,...,n+

j,h+n−j,h}
(`j,h)

where 1 is the indicator function.

4.5 Posterior inference

The findings of the previous section are the key ingredients to perform posterior inference
with a marginal Gibbs sampling scheme. The output of the sampler is structured into three
levels: the first produces posterior probabilities on partitions of disease-specific locations;
the second generates density estimates; the third provides clusters of patients. For nota-
tional simplicity we keep omitting the dependence on m, except when the sampling of the
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concentration ω is concerned. Recall that θ = (θ1, . . . , θJ) and φ = {(φ1,j , . . . , φnj ,j) : j =

1, . . . , J}, with φi,j = (ξi,j , σ
2
i,j). The target distribution of the sampler is the joint distribu-

tion of θ, φ and ω conditionally on the observed dataX .
Sampling φ. In view of the CRF representation of the s-HDP, ti,j stands for the label of
the table where the i-th customer in restaurant j sits and ht,j for the dish label served at
table t in restaurant j and with t and h the corresponding vectors for varying i, j and t.
Moreover, define the assignment variable si,j = 1(φi,j = φ∗ti,j ,j)− 1(φi,j = −φ∗ti,j ,j) and s is
the corresponding vector. In order to generate φ, we need to sample

(i) (ti,j , si,j) for i = 1, . . . , nj and j = 1, . . . , J ;

(ii) ht,j for t ∈ t and j = 1, . . . , J ;

(ii) φ∗∗h for h ∈ h.

Note that, using the latent allocation indicators in t and h, the sampling scheme is more
efficient than sampling directly from the full conditional of each φi,j , since the algorithm
can change more than one parameter simultaneously (Neal, 2000). Define εi,j = Xi,j −
θj and denote the conditional normal density of εi,j associated with the parameter φ∗ =

(ξ∗, σ2∗) with h(εi,j,m|φ∗) and the marginal density of εi,j as

h̄(εi,j) =

∫
h(εi,j |φ)P0(dφ)

To sample (ti,j , si,j) from their joint full conditional, we first sample ti,j from

P (ti,j = t | t−(i,j),h−(i,j),φ∗−(i,j),φ∗∗−(i,j), εi,j) ∝

{
n
−(i,j)
t,j pold(εi,j |φ∗t,j) if t ∈ t−(i,j)

γj pnew(εi,j |φ∗∗−(i,j)) if t = tnew

where t−(i,j), h−(i,j) φ∗−(i,j),φ∗∗−(i,j) coincide with the vectors t, h φ∗,φ∗∗ after having
removed the entries corresponding to the i-th customer in restaurant j. Moreover

pold(εi,j |φ∗t,j) =
1

2
h(εi,j |φ∗t,j) +

1

2
h(εi,j | − φ∗t,j)

and

pnew(εi,j |φ∗∗−(i,j)) =
k−(i,j)∑
h=1

`•,h
|`|+ α

{
1

2
h(εi,j |φ∗∗h ) +

1

2
h(εi,j | − φ∗∗h )

}
+

α

|`|+ α
h̄(εi,j)

Then we sample si,j from its full conditional

p(si,j = s | φ∗, ti,j , εi,j) ∝

{
h(εi,j |φ∗ti,j ) if s = 1

h(εi,j | − φ∗ti,j ) if s = −1
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The conditional distribution of ht,j is

p(ht,j = h | t,h−(t,j),φ∗∗−(t,j), s, ε) ∝


`
−(t,j)
•,h

∏
{(i,j): ti,j=t}

h(si,j εi,j |φh) if h ∈ h−(t,j)

α

∫ ∏
{(i,j): ti,j=t}

h(si,j εi,j |φ)P0(dφ) if h = hnew

Finally, when P0 is conjugate with respect to the Gaussian kernel, the full conditional dis-
tribution of φ∗∗h is obtained in closed form as posterior distribution of a Gaussian model,
using as observations the collection { (si,j εi,j) : hti,j ,j = h}.

Sampling θ. For sampling the disease-specific location parameters, one can rely on the
classical Chinese restaurant metaphor corrected for taking into account only the parti-
tions that have positive prior probability. Thus, in order to generate θ, we first sample
the labels tθ = {t1, . . . , tJ}, where tj is the label of the table where the j-th customer sits.
Then, we sample the dish θ∗t associated to table t for all t ∈ tθ. If zi,j = Xi,j − ξi,j , the
conditional density of zj = (z1,j , . . . , znj ,j) associated to the location parameter θ∗, given
σj = (σ1,j , . . . , σnj ,j), is

fθ∗(zj |σj) =
1

√
2π

nj∏
i=1

σi,j

exp

{
−1

2

nj∑
i=1

(zi,j − θ∗)2

σ2
i,j

}

Under the prior in (4.9), the full conditional distribution of tθ is provided by

p(tj = t | t1, . . . ,tj−1, θj−1, zj ,σj)

∝


a(ω, θ1, . . . , θj−1) fθj−1

(zj |σj) if t = tj

[1− a(ω, θ1, . . . , θj−1)]

∫
fθ(zj |σj)G(dθ) if t = tnew

0 otherwise

Finally, when G is conjugate with respect to the Gaussian kernel, the full conditional dis-
tribution of θ∗t , given {zj : tj = t}, is obtained in closed form using conjugacy of the
Normal-Normal model.

Sampling the concentration parameter. Finally, the concentration parameter ω can be sam-
pled through an importance sampling step using as importance distribution the prior pω
over ω. Denoting withMm the selected partition for θm and with Tm the number of clusters
in Mm, we have

p(ω |Mm : m = 1, . . . ,M) ∝ pω(ω)
ω
∑M
m=1 Tm−M

(ω + 2)M (ω2 + ω + 3)M
.
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4.6 Alternative priors over disorder-specific locations

For comparison purposes and prior sensitivity analysis we consider also two alternative
priors over the disorder-specific locations: a uniform prior, which does not penalize mul-
tiplicity but incorporates the prior information on the severity of disorders, and a mixture
of Dirichlet processes (DPs), which penalizes for multiplicity but does not reflect prior in-
formation.

4.6.1 Uniform prior

The uniform prior is obtained associating zero-probability to nonsensical partitions and a
uniform prior over the remaining, i.e.

P(Mm
b ) ∝

{
1
8 if Mm

b is compatible with the natural order

0 otherwise

The predictive distributions are

θj |θ1, . . . , θj−1 ∼
1

2
δθj−1

+
1

2
G

and the full conditional distribution of tj is

p(tj = t | t(−j)θ ,θ(−j), zj ,σj) ∝


fθj−1

(zj |σj) if t = tj−1∫
fθ(zj |σj)G(dθ) if t = tnew

Notice that with this prior there is not a common concentration parameter and therefore
there is no borrowing of information across cardiac indexes as well as no Ockham’s-razor
effect.

4.6.2 Mixture of DPs prior

Using as prior the mixtures of DPs, the locations (θ1, . . . , θJ), conditionally on ω, are from
a DP and the law of the partition in (4.7) yields the well-known predictive distributions

θj |ω, θ1, . . . , θj−1 ∼
Tj−1∑
t=1

nt
j − 1 + ω

δθ∗t +
ω

j − 1 + ω
G

with Tj−1 the number of distinct values θ∗t in (θ1, . . . , θj−1) and nt = card{i ∈ {1, . . . , j −
1} : θi = θ∗t }. From this, one easily deduces that the conditional prior odds against two
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populations sharing the same location is

P(θj,m 6= θj′m | ω)

P(θj,m = θj′m | ω)
=

Π
(2)
2 (1, 1)

Π
(2)
1 (2)

= ω

Under the mixture of DP prior, the full conditional distribution of tj is

p(tj = t | t(−j)θ ,θ∗(−j), zj ,σj) ∝


n−jt fθ∗t (zj |σj) if t ∈ t(−j)

ω

∫
fθ(zj |σj)G(dθ) if t = tnew

where t(−j) = {tj′ : j′ 6= j}, θ∗(−j) = {θ∗t : t ∈ t(−j)} and n−jt denotes the number of
customers already allocated to table t, after removing the j-th customer.

Moreover, if the prior pω for the concentration parameter is chosen to be gamma with shape
a and rate b, the full conditional for the parameter ω can be obtained by generalizing the
result for a single mixture of DPs in Escobar (1994), as follows. Denote with Tm the number
of distinct values of θm = {θ1,m, . . . , θd,m}, for m = 1, . . . ,M and note that ω depends on
the data only through T1, . . . , TM . The full conditional distribution of ω is:

p(ω | T1, . . . , Tm) ∝ pω(ω) ·
M∏
m=1

p(Tm | ω)

∝ pω(ω) ·
M∏
m=1

[
cd(Tm) d!ωTm

Γ(ω)

Γ(ω + d)

]
where pω(ω) is the prior density of ω and cd(Tm) = p(Tm | ω = 1). Therefore

p(ω | T1, . . . , Tm) ∝ pω(ω) · ω
∑
m Tm−M (ω + d)M

M∏
m=1

 1∫
0

uω(1− u)d−1du


DefiningM auxiliary random variables um form = 1, . . . ,M such that um | ω

iid∼ Beta(ω+

1, d), if pω ≡ Gamma(a, b), then

p(ω | u1, . . . , uM , T1, . . . , Tm) ∝ ωa+
∑
m Tm−M−1 (ω + d)M exp

{
−ω(b−

M∑
m=1

log(um))

}

∝
M∑
v=0

(
M

v

) dv Γ

(
a+

M∑
m=1

Tm − v
)

(
b−

M∑
m=1

log(um)

)a+
M∑
m=1

Tm−v
×Gamma

(
a+

M∑
m=1

Tm − v, b−
M∑
m=1

log(um)

)
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So that the conditional distribution of ω is a mixture of M + 1 Gamma distributions and
the sampling of ω becomes

(i) Sample um, for m = 1, . . . ,M , independently from Beta(ω + 1, J), where J is the
number of populations.

(ii) Sample vω from

p(vω = v |u1, . . . , um) =

(
M

v

)
dv Γ

(
a+

M∑
m=1

Tm − v
) (

b−
M∑
m=1

log(um)
)v

for v ∈ {0, . . . ,M}, where Tm is the number of distinct values in θm, form = 1, . . . ,M .

(iii) Sample ω from Gamma
(
a+

∑M
m=1 Tm − v, b−

∑M
m=1 log(um)

)
.

4.7 Results

4.7.1 Simulation studies

Generating mechanism with underlying relevant factor

We perform here a series of simulation studies with two main goals. First, we aim to
highlight the drawbacks of clustering based on the entire distribution, if compared to our
proposal, when applied to small sample sizes. Second, we check the model’s ability of
detecting the presence of underlying relevant factors in the sense described in Section 4.3.2.
To accomplish the first goal, we compare the results obtained using our model against
the nested Dirichlet process (NDP) of Rodriguez et al. (2008), which is probably the most
widely used Bayesian model to cluster populations. Mimicking the real hypertensive
dataset, we simulate data for 4 samples, ideally corresponding to four diseases, with re-
spective sample sizes of 50, 19, 9 and 22, which correspond to the sample sizes of the real
data investigated in Section 4.7.2. Since the NDP does not allow to treat jointly multiple
response variables, we consider only one response variable to ensure a fair comparison.
The observations are sampled from the following distributions and 100 simulation studies
are performed.

Xi,1
iid∼ 0.5 N( 0, 0.5 ) + 0.5 N( 2, 0.5 ) for i = 1, . . . , n1

Xi,2
iid∼ 0.5 N( 2, 0.5 ) + 0.5 N( 4, 0.5 ) for i = 1, . . . , n2

Xi,3
iid∼ 0.5 N( 4, 0.5 ) + 0.5 N( 6, 0.5 ) for i = 1, . . . , n3

Xi,4
iid∼ 0.5 N( 6, 0.5 ) + 0.5 N( 8, 0.5 ) for i = 1, . . . , n4
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Note that here the true data generating process corresponds to samples from distinct dis-
tributions with pairwise sharing of a mixture component. Alternative scenarios are con-
sidered in the additional simulation studies in the following sections.
The implementation of the NDP was carried out through the marginal sampling scheme
proposed in Zuanetti et al. (2018) extended in order to accomodate hyperpriors on the
concentration parameters of the NDP. To simplify the choice of the hyperparameters, as
suggested by Gelman et al. (2013, p. 535 and p. 551–554) we estimate both models over
standardized data. For our model, we set Gm = N(0, 1) and P0,m = NIG(µ = 0, τ =

1, α = 2, β = 4). Here, NIG(µ, τ, α, β) indicates a normal inverse gamma distribution.
The base distribution for the NDP is NIG(µ = 0, τ = 0.01, α = 3, β = 3), as in Rodriguez
et al. (2008). Finally, we use Gamma priors with shape 3 and rate 3 for all concentration
parameters, which is a common choice. For each simulation study, we perform 10,000
iterations of the MCMC algorithms with the first 5,000 used as burn-in.

Table 4.1: Simulation studies summaries.

sHDP NDP
MAP Average Median MAP Average Median

Partitions count post. prob. post. prob. count post. prob. post. prob.
{1,2,3,4} 0 0.000 0.000 0 0.000 0.000
{1}{2,3,4} 0 0.000 0.000 2 0.020 0.000
{1,2}{3,4} 0 0.000 0.000 72 0.695 0.860
{1,3,4}{2} 0 0.000 0.000 0 0.000 0.000
{1}{2}{3,4} 0 0.027 0.007 3 0.035 0.000
{1,2,3}{4} 0 0.000 0.000 5 0.061 0.000
{1,4}{2,3} 0 0.000 0.000 0 0.000 0.000
{1}{2,3}{4} 1 0.054 0.015 0 0.014 0.000
{1,3}{2,4} 0 0.000 0.000 0 0.000 0.000
{1,2,4}{3} 0 0.000 0.000 0 0.000 0.000
{1}{2,4}{3} 0 0.000 0.000 0 0.000 0.000
{1,2}{3}{4} 0 0.004 0.000 18 0.175 0.032
{1,3}{2}{4} 0 0.000 0.000 0 0.000 0.000
{1,4}{2}{3} 0 0.000 0.000 0 0.000 0.000
{1}{2}{3}{4} 99 0.915 0.954 0 0.000 0.000

Table 4.1 displays summaries of the results on population clustering, darker rows corre-
spond to nonsensical partitions. The true clustering structure is given by the finest par-
tition. As already observed in Rodriguez et al. (2008), the NDP tends to identify fewer,
rather than more clusters, due to the presence of small sample sizes. Using the maximum a
posteriori estimate, our model correctly identifies the partition in 99 out of 100 simulation
studies and a partition with three elements or more in 100 out of 100 simulation studies.
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(a) 95% credible intervals for
population-specific locations

(b) Number of second-level clus-
ters.

(c) Co-clustering. (d) Co-clustering.

Figure 4.5: Panel (a): Mean point estimates and 95% credible intervals for the four pop-
ulations, vertical lines correspond to true values. Panel (b): Posterior distribution on the
number of second-level clusters. Panels (c) and (d): heatmaps of second level clustering,
darker colors correspond to higher probability of co-clustering; in (c) patients are ordered
based on the diagnosis and the four black squares highlight the within-sample probabili-
ties and in (d) patients are reordered based on co-clustering probabilities.

The same counts for the NDP are 0 out of 100 and 21 out of 100. Analogous conclusions
can be drawn looking at posterior probability averages and medians across the 100 simu-
lation studies (see Table 4.1) leaving no doubt about the model to be preferred under this
scenario. Finally, we randomly select three simulation studies among the 100 to achieve
a better understanding the performance in the estimation of the other model parameters.
Here we comment on one of the studies, the other two leading to similar results are re-
ported in Figures 4.6 and 4.7. Figure 4.5a shows point estimates and credible intervals for
the population-specific location parameters θ1, θ2, θ3, θ4. The true means belong to the 95%
credible intervals. Moreover, it turns out that the model is able to detect the presence of
two clusters of subjects leading to a posterior distribution for the number of clusters that is
rather concentrated on the true value, see Figure 4.5b–4.5d. Moreover, the point estimate
for the subject partition, obtained minimizing the Binder loss function, also contains two
clusters, proving the ability of the model in detecting the underlying relevant factor. In the
following, a number of additional simulation studies are conducted, both using alternative
specifications over the disorder-specific parameters and different data generating mecha-
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nisms, the results highlight a good performance of the model, which appears also able to
detect outliers, to highlight non-location effects of the disorders and to produce reliable
outputs even under deviation from symmetry.
In Figures 4.6 and 4.7 below, we display the plots regarding the inference for two additional
randomly selected simulation studies among the 100. Like for the simulation study already
discussed, the true means belong to the 95% credible intervals and the model correctly
identifies the two clusters.

(a) Inference on location parameters (b) Number of second-level clusters.

(c) Co-clustering. (d) Co-clustering.

Figure 4.6: Panel (a): Results of the 37th simulation study. Mean point estimates and
95% credible intervals for the four populations, vertical lines correspond to true values.
Panel (b): Posterior distribution on the number of second-level clusters. Panels (c) and
(d): heatmaps of second level clustering, darker colors correspond to higher probability of
co-clustering; in (c) patients are ordered based on the diagnosis and the four black squares
highlight the within-sample probabilities and in (d) patients are reordered based on co-
clustering probabilities.
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(a) Inference on location parameters (b) Number of second-level clusters.

(c) Co-clustering. (d) Co-clustering.

Figure 4.7: Results of the 9th simulation study. Panel (a): Mean point estimates and
95% credible intervals for the four populations, vertical lines correspond to true values.
Panel (b): Posterior distribution on the number of second-level clusters. Panels (c) and
(d): heatmaps of second level clustering, darker colors correspond to higher probability of
co-clustering; in (c) patients are ordered based on the diagnosis and the four black squares
highlight the within-sample probabilities and in (d) patients are reordered based on co-
clustering probabilities.

Lastly, we display the results obtained over the same simulated data using the alternative
priors described in Section 4.6.
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Table 4.2: Simulation studies summaries.

sHDP-with mixture of DPs sHDP-with unifor prior
MAP Average Median MAP Average Median

Partitions count post. prob. post. prob. count post. prob. post. prob.
{1,2,3,4} 0 0.000 0.000 0 0.000 0.000
{1}{2,3,4} 0 0.000 0.000 0 0.000 0.000
{1,2}{3,4} 0 0.000 0.000 0 0.000 0.000
{1,3,4}{2} 0 0.000 0.000 0 0.000 0.000
{1}{2}{3,4} 5 0.083 0.022 0 0.030 0.009
{1,2,3}{4} 0 0.000 0.000 0 0.001 0.000
{1,4}{2,3} 0 0.000 0.000 0 0.000 0.000
{1}{2,3}{4} 2 0.056 0.012 1 0.051 0.014
{1,3}{2,4} 0 0.000 0.000 0 0.000 0.000
{1,2,4}{3} 0 0.000 0.000 0 0.000 0.000
{1}{2,4}{3} 0 0.000 0.000 0 0.000 0.000
{1,2}{3}{4} 0 0.002 0.000 0 0.003 0.000
{1,3}{2}{4} 0 0.000 0.000 0 0.000 0.000
{1,4}{2}{3} 0 0.000 0.000 0 0.000 0.000
{1}{2}{3}{4} 93 0.859 0.918 99 0.916 0.956

Both models perform better than the NDP, whose results are in Table 4.1, confirming the
advantages of location-based clustering in presence of small sample sizes, when compared
to distribution-based clustering. Moreover, sHDP-with mixture of DPs has a slightly worst
performance with respect to our main proposal, as expected, since the corresponding prior
incorporates less information and ignores the natural order of the four populations.

Generating mechanism with outliers

We present here a simulation study with a twofold goal: (1) compare again the location–
based clustering approach of our proposal with the distribution–based clustering approach
of the nested Dirichlet process (NDP) under a different DGP; (2) study the performance of
our model in presence of outliers. The simulated data have been sampled according to the
following DGP

DGP 1: Xi,1
iid∼ N( 0, 0.5 ) for i = 1, . . . , n1 − 1

Xn1,1 ∼ N( 4, 0.5 )

Xi,2
iid∼ N( 1, 0.5 ) for i = 1, . . . , n2

Xi,3
iid∼ N( 1, 0.5 ) for i = 1, . . . , n3

Xi,4
iid∼ N( 2, 0.5 ) for i = 1, . . . , n4

Thus, the true partition is {1}, {2, 3}, {4}. Moreover, there is one outlier in the first sample.
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Table 4.3: Posterior probabilities over the space of partitions.

s-HDP NDP
{1,2,3,4} 0 0
{1}{2,3,4} 0 0
{1,2}{3,4} 0 0
{1,3,4}{2} 0 0
{1}{2}{3,4} 0 0
{1,2,3}{4} 0.013 0.980
{1,4}{2,3} 0 0
{1}{2,3}{4} 0.771 0.010
{1,3}{2,4} 0 0
{1,2,4}{3} 0 0
{1}{2,4}{3} 0 0
{1,2}{3}{4} 0.006 0.020
{1,3}{2}{4} 0 0
{1,4}{2}{3} 0 0
{1}{2}{3}{4} 0.210 0

Table 4.3 displays the posterior probabilities obtained using our model (s-HDP) and the
NDP. Our model largely outperforms the competitor.

(a) Co-clustering. (b) Co-clustering.

Figure 4.8: Posterior similarity matrices for the simulation study under DGP 1. In (a)
patients are ordered based on the diagnosis; in (b) patients are reordered based on co-
clustering probabilities.

Figure 4.8 shows the posterior co-clustering probabilities obtained in the simulation study.
Our proposal is able to correctly identify the outlier.
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Generating mechanism with non-location effects

We present here a simulation study with a twofold goal: (1) compare again the location–
based clustering approach of our proposal with the distribution–based clustering approach
of the nested Dirichlet process (NDP) under a different DGP; (2) study the performance of
our model in the case in which heterogeneity between populations is not fully explained
by shift in locations. The simulated data have been sampled according to the following
DGP.

DGP 2: Xi,1
iid∼ 0.5 N(−1, 0.5 ) + 0.5 N( 1, 0.5 ) for i = 1, . . . , n1

Xi,2
iid∼ N( 1, 0.5 ) for i = 1, . . . , n2

Xi,3
iid∼ N( 1, 0.5 ) for i = 1, . . . , n3

Xi,4
iid∼ N( 2, 0.5 ) for i = 1, . . . , n4

Thus, the true partition is {1}, {2, 3}, {4}. Moreover, the relative effect of the first popu-
lation w.r.t. the others is not fully explained by the shift of the location, since the whole
distribution is different and not only the mean.

Table 4.4: Posterior probabilities over the space of partitions.

s-HDP NDP
{1,2,3,4} 0 0
{1}{2,3,4} 0.001 0
{1,2}{3,4} 0 0
{1,3,4}{2} 0 0
{1}{2}{3,4} 0.001 0
{1,2,3}{4} 0.058 0.98
{1,4}{2,3} 0 0
{1}{2,3}{4} 0.706 0.01
{1,3}{2,4} 0 0
{1,2,4}{3} 0 0
{1}{2,4}{3} 0 0
{1,2}{3}{4} 0.019 0.02
{1,3}{2}{4} 0 0
{1,4}{2}{3} 0 0
{1}{2}{3}{4} 0.214 0

Table 4.4 displays the posterior probabilities obtained using our model (s-HDP) and the
NDP. Our model largely outperforms the competitor.
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(a) Co-clustering. (b) Co-clustering.

Figure 4.9: Posterior similarity matrices for the simulation study under DGP 2. In (a) pa-
tients are ordered based on the diagnosis and the four black squares highlight the within-
sample probabilities; in (b) patients are reordered based on co-clustering probabilities.

Figure 4.9 shows the posterior co-clustering probabilities. Our proposal is able to correctly
identify the non–location effect (see Figure 4.9(a)).

Simulation studies under non-symmetric data generating process

We present here three simulation studies to check the performance of the model under de-
viations from symmetry. The simulated data have been sampled according to the following
DGPs.

DGP 3: Xi,1
iid∼ N(0, 0.5 ) for i = 1, . . . , n1

Xi,2
iid∼ Gamma( 3, 3) for i = 1, . . . , n2

Xi,3
iid∼ N( 1, 0.5 ) for i = 1, . . . , n3

Xi,4
iid∼ N( 2, 0.5 ) for i = 1, . . . , n4

DGP 4: Xi,1
iid∼ 0.7 N(−1, 0.5 ) + 0.3 N( 1, 0.5 ) for i = 1, . . . , n1

Xi,2
iid∼ N( 1, 0.5 ) for i = 1, . . . , n2

Xi,3
iid∼ N( 1, 0.5 ) for i = 1, . . . , n3

Xi,4
iid∼ N( 2, 0.5 ) for i = 1, . . . , n4

DGP 5: Xi,1
iid∼ Gamma( 10, 10) for i = 1, . . . , n1

Xi,2
iid∼ Gamma( 10, 10) for i = 1, . . . , n2

Xi,3
iid∼ Gamma( 10, 10) for i = 1, . . . , n3

Xi,4
iid∼ 0.5 N( 0, 0.5 ) + 0.5 N( 2, 0.5 ) for i = 1, . . . , n4
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Under all DGPs the model is misspecified due to lack of symmetry in one or more popu-
lations. Under DGP 3 and DGP 4 the true partition is {1}, {2, 3}, {4}, while under DGP 5
it is {1, 2, 3, 4}. In DGP 3 the second population differs from the others also in distribution
(what we called non-location effect), the same is true for the first and the fourth popula-
tions respectively under DGP 4 and DGP 5. Table 4.5 shows that the model is able to detect
the right clustering of the population-specific locations under all three DGPs. Moreover,
Figure 4.10 shows co-clustering probabilities that differ in correspondence of the popula-
tions affected by non-location effects, more or less evidently based on the DGP used to
generate the data. This results are reassuring: under misspecification, not only the model
appears robust in estimating locations’ partitions, but also, the different within-population
patterns of co-clustering probabilities still highlighting heterogeneities different than shifts
in population-specific locations.

Table 4.5: Posterior probabilities over the space of partitions.

DGP 3 DGP 4 DGP 5
{1,2,3,4} 0 0.001 0.494
{1}{2,3,4} 0 0 0.023
{1,2}{3,4} 0 0 0.014
{1,3,4}{2} 0 0 0
{1}{2}{3,4} 0 0 0.004
{1,2,3}{4} 0.016 0 0.375
{1,4}{2,3} 0 0 0
{1}{2,3}{4} 0.736 0.788 0.047
{1,3}{2,4} 0 0 0
{1,2,4}{3} 0 0 0
{1}{2,4}{3} 0 0 0
{1,2}{3}{4} 0.015 0 0.030
{1,3}{2}{4} 0 0 0
{1,4}{2}{3} 0 0 0
{1}{2}{3}{4} 0.232 0.211 0.012

(a) Co-clustering DGP 3. (b) Co-clustering DGP 4. (c) Co-clustering DGP 5.

Figure 4.10: Posterior similarity matrices under DGP 3-4-5. Patients are ordered based on
the diagnosis and the four black squares highlight the within-sample probabilities.
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Table 4.6: Posterior probabilities over partitions of means. Maximum a posteriori probabil-
ities are in bold.

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A
{C,G,M,S} 0.021 0.000 0.000 0.000 0.000 0.365 0.303 0.096 0.000 0.000
{C}{G,M,S} 0.002 0.546 0.001 0.083 0.016 0.078 0.190 0.021 0.036 0.000
{C,G}{M,S} 0.002 0.000 0.001 0.000 0.000 0.037 0.038 0.072 0.076 0.049
{C,M,S}{G} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G}{M,S} 0.001 0.139 0.001 0.019 0.024 0.028 0.078 0.042 0.232 0.055
{C,G,M}{S} 0.463 0.000 0.595 0.000 0.000 0.276 0.045 0.498 0.020 0.002
{C,S}{G,M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G,M}{S} 0.146 0.099 0.188 0.551 0.672 0.074 0.164 0.092 0.260 0.033
{C,M}{G,S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,G}{M}{S} 0.233 0.000 0.107 0.000 0.000 0.083 0.062 0.114 0.091 0.371
{C,M}{G}{S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,S}{G}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G}{M}{S} 0.133 0.216 0.108 0.347 0.288 0.060 0.121 0.065 0.287 0.491∑

log15

(
p−pii

)
0.501 0.430 0.415 0.361 0.289 0.632 0.688 0.598 0.613 0.424

4.7.2 Impact of hypertensive disorders on maternal cardiac dysfunction

Our analysis is based on the dataset of Tatapudi & Pasumarthy (2017a), which can be
obtained from https://data.mendeley.com/datasets/d72zr4xggx/1. The dataset contains
observations for 10 cardiac function measurements collected through a prospective case-
control study on women in the third semester of pregnancy divided in n1 = 50 control
cases (C), n2 = 19 patients with gestational hypertension (G), n3 = 9 patients with mild
preeclampsia (M) and n4 = 22 patients with severe preeclampsia (S). The cases are women
admitted to King George Hospital Visakhapatnam India from 2012 to 2014. The healthy
sample is composed by normotensive pregnant women. All women with hypertension
were on antihypertensive treatment with oral Labetalol or Nifedipine. Women with severe
hypertension were treated with either oral nifedipine and parenteral labetalol or a combi-
nation. For more details on the dataset, we refer to Tatapudi & Pasumarthy (2017b). The
prior specification is the same as in the previous section. Section 4.7.3 contains a prior-
sensitivity analysis and shows rather robust results w.r.t. different prior specifications.
Inference is based on 10,000 MCMC iterations with the first half used as burn-in.

Table 4.6 displays the posterior distributions for the partitions of unknown disease-specific
means along with the corresponding entropy measurements, that can be used as measures
of uncertainty. First of all, we notice that, if one takes also the ordering among distinct
disease-specific locations into account: the posterior partition probabilities are, as desired,
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Table 4.7: Posterior probabilities over ordered partitions of means.

ordered partition with
cardiac index highest posterior probability posterior prob
CI {C,G,M}>{S} 0.463
CWI {C}<{G,M,S} 0.546
LVMI {C,G,M}<{S} 0.595
IVST {C}<{G,M}<{S} 0.548
LVPW {C}<{G,M}<{S} 0.671
EF {C,G,M,S} 0.365
FS {C,G,M,S} 0.303
EW {C,G,M}>{S} 0.497
AW {C}<{G,M}<{S} 0.256
E/A {C}>{G}>{M}>{S} 0.466

Figure 4.11: 95% credible intervals for population-specific locations for CI and CWI

concentrated on specific orders of the associated unique values for all ten cardiac indexes.
For instance, we have P({θC,CI = θG,CI = θM,CI}{θS,CI} | X) = P(θC,CI = θG,CI =

θM,CI > θS,CI | X) = 0.463. The ordered partitions with the highest posterior probability
are displayed in Table 4.7.
Considering the posterior probabilities summarized in Table 4.6 and in Table 4.7, we find
that the cardiac index (CI) is reduced in severe preeclampsia compared to all other patients,
indicating reduced myocardial contractility in the presence of the most severe disorder.
The cardiac work index (CWI) is a good indicator to distinguish between cases and con-
trol, but not among cases. The left ventricular mass index (LVMI) is increased in severe
preeclampsia patients compared to other pregnant women, indicating ventricular remod-
elling. While inter ventricular septal thickness (IVST) and left ventricular posterior wall
thickness (LVPW) differ both between cases and controls and between severe preeclamp-
sia and other disorders, indicating a progressive increase in the indexes with the severity of
the disorder. The posterior probabilities associated to indexes of systolic function such as
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Table 4.8: Posterior probabilities over partitions of means. Maximum a posteriori probabil-
ities are in bold.

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A
{C,G,M,S} 0.019 0.000 0.000 0.000 0.000 0.332 0.247 0.078 0.000 0.000
{C}{G,M,S} 0.002 0.643 0.001 0.114 0.031 0.065 0.130 0.048 0.080 0.000
{C,G}{M,S} 0.004 0.000 0.003 0.000 0.000 0.044 0.019 0.152 0.073 0.103
{C,M,S}{G} 0.004 0.000 0.000 0.000 0.000 0.037 0.105 0.013 0.000 0.000
{C}{G}{M,S} 0.002 0.065 0.002 0.047 0.078 0.027 0.036 0.063 0.424 0.167
{C,G,M}{S} 0.316 0.000 0.527 0.000 0.000 0.178 0.032 0.288 0.002 0.000
{C,S}{G,M} 0.023 0.000 0.000 0.000 0.000 0.019 0.103 0.006 0.000 0.000
{C}{G,M}{S} 0.173 0.089 0.124 0.472 0.594 0.033 0.054 0.064 0.140 0.042
{C,M}{G,S} 0.002 0.000 0.001 0.003 0.000 0.044 0.031 0.017 0.000 0.000
{C,G,S}{M} 0.018 0.000 0.000 0.000 0.000 0.061 0.067 0.016 0.000 0.000
{C}{G,S}{M} 0.005 0.163 0.001 0.095 0.006 0.028 0.040 0.015 0.016 0.000
{C,G}{M}{S} 0.213 0.000 0.124 0.000 0.000 0.052 0.014 0.121 0.036 0.241
{C,M}{G}{S} 0.074 0.000 0.137 0.003 0.000 0.041 0.022 0.055 0.001 0.000
{C,S}{G}{M} 0.014 0.000 0.000 0.000 0.000 0.011 0.067 0.004 0.000 0.000
{C}{G}{M}{S} 0.133 0.040 0.079 0.265 0.291 0.029 0.033 0.059 0.229 0.448∑

log15

(
p−pii

)
0.687 0.407 0.509 0.501 0.371 0.828 0.886 0.823 0.582 0.505

ejection fraction (EF) and fraction shortening (FS) are relatively concentrated on the parti-
tion of complete homogeneity, letting us to conclude that no differences are present among
patients. For what concerns parameters of diastolic function, the posterior distribution for
the E-wave indicator identifies a modified index in severe preeclampsia patients, while the
mean E/A ratio indicates a decreasing diastolic function with the severity of the disorder.
The posterior for the A-wave index is actually concentrated on three distinct partitions,
leaving a relatively high uncertainty regarding the modifications of the index. However,
considering jointly the three partitions with the highest posterior probability, differences
are detected between control and cases with a total posterior probability equal to 0.779.
Figure 4.11 shows point estimates and credible intervals for disorder-specific location pa-
rameters for the first two cardiac indexes, the same plots for all cardiac indexes can be
found below.
Table 4.8 shows the results obtained using the prior in (4.7), instead of (4.8). First of all note
that for all ten cardiac indexes, the posterior associates negligible probabilities to partitions
that are in contrast with the natural order of the diagnoses. This is particularly reassuring
in that the model, even without imposing such an order a priori, is able to single it out
systematically across cardiac indexes. Moreover, we observe how the partitions identified
by MAP are the same of Table 4.6 for all cardiac index except AW. However, even under this
alternative prior, the A-wave index is concentrated on the same three distinct partitions,
that lead to conclude that it exists a difference between cases and control.
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(a) density estimation
(b) co-clustering (c) co-clustering

(d) density estimation
(e) co-clustering (f) co-clustering

Figure 4.12: Panels (a) and (d): density estimates. Panels (b)–(c) and (e)–(f): heatmaps of
the posterior probabilities of co-clustering; in (b) and (e) patients are ordered based on the
diagnosis and the four black squares highlight the within-sample probabilities; in (c) and
(f) patients are reordered based on co-clustering probabilities.

As far as prediction and second-level clustering are concerned, Figure 4.12 displays the
density estimates and the heatmap of co-clustering probabilities between pairs of patients
for the E/A ratio and LVMI. Figure 4.12b shows that co-clustering probabilities are similar
within and across diagnoses, indicating that the effect of the diseases on the distribution
of the cardiac index is mostly explained through shifts between disease-specific locations.
Moreover Figure 4.12b suggests the presence of three outliers that have low probability
of co-clustering with all the other subjects and that would be ignored by the model us-
ing a more traditional ANOVA structure. Contrary, Figure 4.12e shows a slightly different
pattern for co-clustering probabilities in the fourth square, which suggests that the hetero-
geneity between severe preeclampsia patients and the others patients is not entirely ex-
plained by shifts in disease-specific locations. Finally, Figure 4.12f suggests the presence of
an underlying relevant factor. The corresponding figures for all ten response variables are
reported below and can be used for prediction and for a graphical analysis aimed at con-
trolling the presence of underlying relevant factors, outliers and differences across diseases
distinct from shifts between disease-specific locations.
Our results are coherent with almost all of the findings in Tatapudi & Pasumarthy (2017b)
where results were obtained through a series of independent frequentist tests. However,
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importantly, we are able to provide more details thanks to the simultaneous comparison
approach and the latent clustering of subjects. For instance, considering the response
LVMI, Tatapudi & Pasumarthy (2017b) detected a significant increase in cases compare
to controls and an increase in severe preeclampsia compared to gestional hypertensive
and mild preeclampsia patients. Such results do not clarify whether a modification exists
between the control group and gestional hypertensive patients or between the latter and
mild preeclampsia patients. Moreover, in their analysis, no information can be deducted
regarding effects different than shifts in locations, presence of underlying common factors
or outliers. The figures below display density estimates, heatmaps of co-clustering between
patients, and locations’ credible intervals for all response variables.

(a) density estimation
(b) co-clustering (c) co-clustering

(a) density estimation
(b) co-clustering (c) co-clustering

(a) density estimation
(b) co-clustering (c) co-clustering
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(a) density estimation
(b) co-clustering (c) co-clustering

(a) density estimation
(b) co-clustering (c) co-clustering

(a) density estimation
(b) co-clustering (c) co-clustering

(a) density estimation
(b) co-clustering (c) co-clustering
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(a) density estimation
(b) co-clustering (c) co-clustering

(a) density estimation
(b) co-clustering (c) co-clustering

(a) density estimation
(b) co-clustering (c) co-clustering
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4.7.3 Prior sensitivity to hyperpriorparameters

Here we verify the robustness of the model w.r.t. different specifications of the hyper-
parameters. We consider two alternative specifications for the hyperparameters, which
differ from the one already used in the previous section, which are Prior specification 1:
Gm = N(0, 1); P0,m ≡ NIG(µ = 0, τ = 0.01, α = 3, β = 3); all concentration parameters
have prior equal to Gamma(3, 3); Prior specification 2: Gm = N(0, 2); P0,m ≡ NIG(µ =

0, τ = 1, α = 2, β = 4); all concentration parameters have prior equal to Gamma(0.1, 0.1).
The model turns out to be rather robust w.r.t. the choice of the hyperparameters, leading
to the same selected models for all cardiac indexes under all considered specifications. The
detailed results are in the following tables and figures, which report the posterior over par-
titions of locations, the density estimates, and the posterior similarity matrices for the last
cardiac index.

Table 4.9: Posterior probabilities over partitions of means, using prior specification 1. Max-
imum a posteriori probabilities are in bold.

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A
{C,G,M,S} 0.018 0.000 0.000 0.000 0.000 0.371 0.276 0.100 0.000 0.000
{C}{G,M,S} 0.002 0.526 0.001 0.086 0.015 0.068 0.207 0.025 0.028 0.000
{C,G}{M,S} 0.002 0.000 0.000 0.000 0.000 0.038 0.035 0.058 0.072 0.045
{C,M,S}{G} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G}{M,S} 0.001 0.139 0.000 0.021 0.023 0.025 0.087 0.034 0.244 0.054
{C,G,M}{S} 0.436 0.000 0.612 0.000 0.000 0.279 0.04 0.499 0.007 0.001
{C,S}{G,M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G,M}{S} 0.157 0.100 0.180 0.542 0.678 0.073 0.172 0.103 0.265 0.026
{C,M}{G,S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,G}{M}{S} 0.252 0.000 0.092 0.000 0.000 0.081 0.054 0.113 0.087 0.361
{C,M}{G}{S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,S}{G}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G}{M}{S} 0.131 0.234 0.116 0.351 0.284 0.066 0.130 0.068 0.295 0.513

(a) density estimation
(b) co-clustering (c) co-clustering
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Table 4.10: Posterior probabilities over partitions of means, using prior specification 2.
Maximum a posteriori probabilities are in bold.

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A
{C,G,M,S} 0.023 0.000 0.000 0.000 0.000 0.341 0.281 0.109 0.000 0.000
{C}{G,M,S} 0.002 0.484 0.000 0.097 0.055 0.079 0.199 0.028 0.029 0.000
{C,G}{M,S} 0.002 0.000 0.001 0.000 0.000 0.036 0.029 0.042 0.074 0.058
{C,M,S}{G} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G}{M,S} 0.001 0.134 0.001 0.022 0.028 0.033 0.090 0.033 0.238 0.068
{C,G,M}{S} 0.408 0.000 0.585 0.000 0.000 0.254 0.036 0.494 0.014 0.001
{C,S}{G,M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G,M}{S} 0.145 0.111 0.184 0.530 0.643 0.077 0.172 0.105 0.254 0.019
{C,M}{G,S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,G}{M}{S} 0.247 0.000 0.097 0.000 0.000 0.089 0.050 0.106 0.076 0.346
{C,M}{G}{S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,S}{G}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G}{M}{S} 0.172 0.270 0.131 0.351 0.274 0.091 0.144 0.084 0.315 0.508

(a) density estimation
(b) co-clustering (c) co-clustering
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4.7.4 s-HDP with uniform prior estimates on the Hypertensive Dataset

Here we report the results on the real dataset, obtained with the s-HDP with independent
uniform priors on disease-specific locations, described in Section 4.6. This prior induces in-
dependence between different cardiac indexes and no borrowing of information (i.e. penal-
ization for multiplicity) is applied. Moreover, compared to the priors used in Section 4.7.2,
here the prior associates higher probability to finer partitions and, thus, does not apply a
Ockham’s-razor penalty, resulting in a different MAP for the EF.

Table 4.11: Posterior probabilities over partitions obtained through independent uniform
priors. Maximum a posteriori probabilities are in bold.

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A
{C,G,M,S} 0.009 0.000 0.000 0.000 0.000 0.248 0.216 0.047 0.000 0.000
{C}{G,M,S} 0.002 0.568 0.001 0.084 0.014 0.078 0.205 0.027 0.039 0.000
{C,G}{M,S} 0.003 0.000 0.002 0.000 0.000 0.082 0.079 0.160 0.102 0.055
{C,M,S}{G} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G}{M,S} 0.001 0.143 0.001 0.024 0.029 0.027 0.087 0.041 0.262 0.064
{C,G,M}{S} 0.376 0.000 0.555 0.000 0.000 0.324 0.060 0.422 0.005 0.002
{C,S}{G,M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G,M}{S} 0.157 0.115 0.188 0.614 0.730 0.078 0.189 0.096 0.304 0.045
{C,M}{G,S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G,S}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,G}{M}{S} 0.353 0.000 0.173 0.000 0.000 0.125 0.088 0.162 0.087 0.378
{C,M}{G}{S} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C,S}{G}{M} 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
{C}{G}{M}{S} 0.099 0.174 0.079 0.278 0.227 0.039 0.077 0.045 0.201 0.457∑

log15

(
p−pii

)
0.493 0.426 0.432 0.352 0.269 0.664 0.725 0.624 0.603 0.448

(a) density estimation
(b) co-clustering (c) co-clustering
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4.7.5 NDP estimates on the Hypertensive Dataset

Here we report the results obtained with ten independent NDPs used on the real dataset.
As expected, the NDP tends to identify coarser partitions. Moreover, the independence
between cardiac indexes of the NDP approach leads to more concentrated posterior proba-
bilities, because no borrowing of information (i.e. penalization for multiplicity) is applied.

Table 4.12: Posterior probabilities over partitions obtained through independent NDPs.
Maximum a posteriori probabilities are in bold.

partitions CI CWI LVMI IVST LVPW EF FS EW AW E/A
{C,G,M,S} 0.117 0.000 0.000 0.000 0.000 0.613 0.394 0.116 0.000 0.000
{C}{G,M,S} 0.004 0.999 0.001 0.696 0.663 0.047 0.099 0.049 0.313 0.000
{C,G}{M,S} 0.010 0.000 0.014 0.000 0.001 0.027 0.035 0.206 0.043 0.768
{C,M,S}{G} 0.013 0.000 0.000 0.000 0.000 0.040 0.067 0.051 0.000 0.000
{C}{G}{M,S} 0.001 0.000 0.001 0.013 0.163 0.005 0.015 0.088 0.468 0.013
{C,G,M}{S} 0.552 0.000 0.906 0.000 0.000 0.103 0.091 0.154 0.002 0.000
{C,S}{G,M} 0.070 0.000 0.000 0.000 0.000 0.025 0.069 0.029 0.000 0.000
{C}{G,M}{S} 0.077 0.001 0.010 0.207 0.136 0.010 0.032 0.050 0.093 0.006
{C,M}{G,S} 0.009 0.000 0.003 0.023 0.000 0.035 0.045 0.017 0.001 0.000
{C,G,S}{M} 0.047 0.000 0.000 0.000 0.000 0.068 0.081 0.073 0.000 0.000
{C}{G,S}{M} 0.003 0.001 0.000 0.052 0.027 0.007 0.022 0.012 0.030 0.000
{C,G}{M}{S} 0.065 0.000 0.047 0.000 0.000 0.011 0.016 0.071 0.007 0.208
{C,M}{G}{S} 0.025 0.000 0.017 0.004 0.000 0.007 0.017 0.033 0.001 0.000
{C,S}{G}{M} 0.006 0.000 0.000 0.000 0.000 0.006 0.014 0.023 0.000 0.000
{C}{G}{M}{S} 0.007 0.000 0.002 0.007 0.012 0.001 0.007 0.032 0.044 0.006∑

log15

(
p−pii

)
0.603 0.016 0.167 0.349 0.368 0.567 0.785 0.898 0.509 0.239

4.8 Concluding remarks
We designed a Bayesian nonparametric model to detect clusters of hypertensive disorders
over different cardiac function indexes and found modified cardiac functions in hyperten-
sive patients compared to healthy subjects as well as progressively increased alterations
with the severity of the disorder. The proposed model has application potential also be-
yond the considered setup when the goal is to cluster populations according to multivariate
information: it borrows strength across response variables, preserves the flexibility intrin-
sic to nonparametric models, and correctly detects partitions of populations even in pres-
ence of small sample sizes, when alternative distribution-based clustering models tends
to underestimate the number of clusters. The key component of the model is the s-HDP,
a hierarchical nonparametric structure for the error terms that offers flexibility and serves
as a tool to investigate the presence of unobserved factors, outliers and effects other than
changes in locations. Interesting extensions of the model include generalizations to other
types of invariances in order to accommodate identifiability in generalized linear models,
for instance in presence of count data and a log link function, as well as generalizations to
other types of processes, beyond the Dirichlet process.
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Chapter 5

Dependent Prior Processes for Panel
Count Data

This chapter shows how dependent processes may be effectively used to make inference on
panel count data, which are data concerning recurrent events experienced by subjects that
cannot be observed in continuous time. Contrary to what has been done in all previous
chapters, here dependent processes are used for data that are not partially exchangeable.
However, as in all the chapters of this thesis, the dependence between the processes plays a
crucial role in the definition of the appropriate Bayesian learning mechanism, as explained
in Section 5.1. After presenting the model, we investigate prior and posterior distributional
properties (Section 5.2 and 5.3), develop a MCMC algorithm to perform posterior inference
(Section 5.4), and test the performance of our proposal in a simulation studies (Section 5.5).

5.1 Dependence in panel count data

Panel count data occur in observational studies and clinical trials that concern recurrent
events, e.g., tumor, infection, or asthma attacks recurrences, where for each subject cumu-
lative counts are recorded at discrete time points (see Thall & Lachin, 1988; Balshaw &
Dean, 2002; Sun, 2013). More formally, the observed data are such that for each subject i,
from a sample of n subjects, we record

• a collection of discrete time points (ti,1, . . . ti,mi) at which the i-th subject has been
observed, where 0 ≤ ti,1 < . . . < ti,mi and mi is the total number of points,

• the cumulative counts Ni,j of the recurrent event of interest, experienced by the i-th
subject up to time ti,j , for j = 1, . . . ,mi,

• the follow up time Ci, which in this chapter we assume to be a fixed, non-informative
time point.
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For example, ti,j may be the time of the j-th clinical visit for patient i, Ni,j the number of
recurrent tumors between t = 0 and ti,j , again for patient i, and Ci is the time at which the
study ends for subject i. Both the time points and the cumulative counts are considered
as realizations of point processes, namely the observation process and the event process and,
typically, the main inferential goal is to estimate the mean function of the event process.
We denote with Ni = {Ni(t) : t > 0} the event process for subject i, i.e., Ni(t) is the
number of events experienced by subject i up to time t, and with Ti = {Ti(t) : t > 0}, the
observational process for subject i, i.e., Ti(t) is the number of times when the i-th subject
has been observed up to time t. Contrary to what happens with standard recurrent event
data, in panel count data the subject is not observed continuously and therefore the analyst
has only a partial observation of the realized path of the processNi(t). Thus, Ni,j = Ni(ti,j)

and the inferential target is E[Ni(t)].

Standard models for panel count data assume that the observation process is not infor-
mative and independent from the event process (cf. Sun, 2013). Even though assuming
independence between the two processes simplifies the inferential procedure, the assump-
tion is not realistic in many applications. A typically example of dependence is when,
in observational studies, those subjects that experience the event less often, tend to skip
clinical visits, decreasing the rates of their observation processes. Recently there has been
an increasing literature whose aim is to model subject-level dependence between the fre-
quency of observation and the number of events (see, for instance, He et al., 2009; Liang
et al., 2018). In simple words, subject-level dependence acts between Ni and Ti, but not
between Ni and Tj . Modeling subject-level dependence is important because it allows to
correct potential distortions in the mean functions estimates and can be usually done using
frailties. However, a proper Bayesian model for panel count data should incorporate the
information about dependence also in the learning mechanism, ultimately incorporating
dependence between the two processes also at populations-level. Easily: if knowledge about
positive association between the two processes is available a priori and, in a certain sam-
ple, we observe high frequency of observational points (higher than our prior guess), we
should increase our guess for the event mean functions not only of the observed subjects
but also of a new subject. However, we are not aware of any proposed statistical model
for panel count data that induces such dependence at the population level and automati-
cally incorporates the information provided by the observational points in the prediction
of the event mean function of a new subject. We propose a class of Bayesian nonparametric
priors over the observation and the event processes that allow for population-level depen-
dence, incorporating prior information regarding positive association between frequency
of observation and counts. The two processes are assumed to be inhomogeneous Poisson
processes with random intensities. The priors are defined through mixtures with respect
to CRMs, such that dependence across CRMs induces dependence between the two pro-
cesses. Covariates and subject-specific frailties can be included in the model through a Cox
regression (see Section 6.4).
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5.2 The model

5.2.1 Cox processes with dependent mixture intensities

We exploit the common assumption that the process generating the recurrent events, namely
the event process, being an inhomogeneous Poisson process (PP), with intensity function
λN (t) and we write

{Ni(t) : t > 0} | λN (t)
iid∼ PP(λN (t) )

In addition, we assume that also the observation process, from which the time points
ti,1, . . . ti,mi are generated, is an inhomogeneous PP, with intensity function λT (t)

{Ti(t) : t > 0} | λT (t)
iid∼ PP(λT (t) )

Priors on λT (t) and λN (t) are then defined through mixtures with respect to CRMs

λT (t) =

∫
Y

kT (t; y)µ̃T (dy)

λN (t) =

∫
Y

kN (t; y)µ̃N (dy)

(µ̃T , µ̃N ) ∼ Q

(5.1)

where µ̃T and µ̃N are CRMs defined on a measurable space (Y,Y); kl(·; ·), for l ∈ {T, N},
are transition kernels on R+ ×Y and Q is the joint probability measure induced by µ̃T and
µ̃N . Similar CRMs mixture specifications have been used for hazard rates in survival mod-
els in Dykstra & Laud (1981) and Lo & Weng (1989) and more recently in Lijoi & Nipoti
(2014) and Arbel et al. (2016) (cf. Section 1.3.2). Different choices for Q give rise to al-
ternative joint prior distributions over the observation and event process and controls the
dependence between the two. In particular, in this chapter we consider three different
specifications for Q: independent CRMs, GM-dependent CRMs (Lijoi et al., 2014a,b) and
hierarchical CRMs (Camerlenghi et al., 2019b). Details on GM-dependent CRMs and hier-
archical CRMs can been found in Section 1.4.1 and 1.4.2, while the independent case is sim-
ply obtained assuming that the joint probability measure can be factorized: Q = Qµ̃T ⊗Qµ̃N .
Clearly, when this happens, the information regarding the dependence between the obser-
vation process and the event process is ignored by the learning mechanism. We will use
the independent case as benchmark in the simulation study. Notice that the model can be
extended to include subject-level covariates and frailties using a Cox regression model for
the intensities, such that

{Ni(t) : t > 0} | λN,i(t)
ind∼ PP(λN,i(t) )
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{Ti(t) : t > 0} | λT,i(t)
ind∼ PP(λT,i(t) )

λl,i(t;xi) = λ0,l(t) exp{x′iβl + εl,i} for l ∈ {T,N}

where the baseline intensity functions λ0,T (t) and λ0,N (t) are distributed according to (5.1)
and xi is a vector of covariates. The model is then completed choosing appropriate prior
distributions over βl and εl,i. Notice, moreover, that the use of frailties εl,i permits to in-
corporate subject-level dependence. As already mentioned, such dependence is important
from a modeling point of view, however is not the core of our proposal and can be simply
managed using a joint prior distribution on εT,i and εN,i. Therefore for sake of clarity, in
this chapter, we consider the simple model without frailties and covariates, and then we
extended the model in Section 6.4. We conclude this section providing expression for the
first and second a priori marginal moments induced on the intensities and on the processes
by equation (5.1). For sake of brevity, we report here below only results for the observation
process, since the ones for the event process are analogous. We believe the two following
results being a useful tool for the choice of the kernel functions and the intensities of the
CRMs, during prior elicitation.

Proposition 5.1. The prior expected value of the observation process and of the observation inten-
sity at any time point t ∈ R+ are

E[Ti(t) ] =

∫
R+×Y

( t∫
0

kT (t′; y)dt′
)
s v(ds, dy)

E[λT (t) ] =

∫
R+×Y

kT (t; y) s v(ds, dy)

where v is the Lévy intensity of µ̃T .

Note that both moments are finite if and only if
∫ +
R sv(ds, dy) < +∞.

Proposition 5.2. The prior variance of the observation process and of the observation intensity at
any time point t ∈ R+ are

Var[Ti(t) ] =

∫
R+×Y

( t∫
0

kT (t′; y)dt′
)
s2 v(ds, dy)

Var[λT (t) ] =

∫
R+×Y

kT (t; y) s2 v(ds, dy)

where v is the Lévy intensity of µ̃T .

Note that both moments are finite if and only if
∫ +
R s2v(ds, dy) < +∞. The proofs of both

propositions trivially follow from results in Appendix B.
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Example 5.1. Il µ̃T is a gamma GM-dependent CRM and the kernel is of OU type (see Sec-
tion 1.3.2), i.e. kT (t; y) = 2ke−k(t−y)

1{t≥y}, then

E[Ti(t) ] = Var[Ti(t) ] = c

∫
Y∩{y : y≤t}

2 (1− e−k(t−y))P0(dy)

E[λT (t) ] = Var[λT (t) ] = c

∫
Y∩{y : y≤t}

2 k e−k(t−y)P0(dy)

where c is the concentration parameter and P0 is the base measure of µ̃T .

5.2.2 Prior correlation between observational and event processes

The main advantage of the specification in (5.1) is the possibility to model population-level
dependence between the two processes that give rise to panel count data. Such dependence
is clearly ignored if the two mixing CRMs are independent. In this section we provide the
a priori correlation structure between the two processes, induced by the two alternative
dependent priors, respectively GM-dependent and hierarchical CRMs.

Proposition 5.3. The pairwise a priori covariance between the two processes at two time points
t1, t2 ∈ R+ is as follows.

(i) If (µ̃T , µ̃N )
d
= GM-dependent CRM, then

Cov(Ti(t1), Nj(t2)) =

∫
R+×Y

( t1∫
0

kT (t; y)dt

)( t2∫
0

kN (t; y)dt

)
s2 v0(ds, dy) ≥ 0

where v0 is the intensity of µ0, the common component of µ̃T and µ̃N (cf. Section 1.4.1).

(ii) If (µ̃T , µ̃N ) are CRMs with hierarchical structure, i.e.,

µ̃l | µ̃0
ind∼ CRM(ṽl) with ṽl(ds, dy) = ρl(s) ds µ̃0(dy) and l ∈ {T,N}

µ̃0 ∼ CRM(ṽ0)

then

Cov(Ti(t1), Nj(t2)) =

∫
R+

s ρT (s)ds

∫
R+

s ρN (s)ds×

×
∫

R+×Y

t1∫
0

kT (t1; y)

t2∫
0

kN (t2; y) s2 ṽ0(ds, dy) ≥ 0
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Proof. First of all, note that

Cov(Ti(t1), Nj(t2)) = E[Cov(Ti(t1), Nj(t2) | µ̃T , µ̃N ) ]

+ Cov(E[Ti(t1) | µ̃T ], E[Nj(t2) | µ̃N ] )

Where the first term equal zero, because the two processes are conditionally independent

Cov(Ti(t1), Nj(t2) | µ̃T , µ̃N ) = 0

Let us compute the second term

Cov(E[Ti(t1) | µ̃T ], E[Nj(t2) | µ̃N ] ) =

= E
[
E[Ti(t1) | µ̃T ] · E[Nj(t2) | µ̃N ]

]
− E

[
E[Ti(t1) | µ̃T ]

]
· E
[
E[Nj(t2) | µ̃N ]

]
=

= E

[ t1∫
0

λT (x)dx

t2∫
0

λN (x)dx

]
− E

[ t1∫
0

λT (x)dx

]
E

[ t2∫
0

λN (x)dx

] (5.2)

substituting the expression of the intensities, we get

Cov(E[Ti(t1) | µ̃T ], E[Nj(t2) | µ̃N ] ) =

= E
[( t1∫

0

∫
Y

kT (x; y)µ̃T (dy)dx

)( t2∫
0

∫
Y

kN (x; y)µ̃N (dy)dx

)]
+

− E
[( t1∫

0

∫
Y

kT (x; y)µ̃T (dy)dx

)]
· E
[( t2∫

0

∫
Y

kN (x; y)µ̃N (dy)dx

)] (5.3)

Moreover if (µ̃T , µ̃N ) are GM-dependent CRM, (5.3) simplifies to

E
[(∫

Y

t1∫
0

kT (x; y)dxµ0(dy)

)(∫
Y

t2∫
0

kN (x; y)dxµ0(dy)

)]
+

−E
[(∫

Y

t1∫
0

kT (x; y)dxµ0(dy)

)]
E
[(∫

Y

t2∫
0

kN (x; y)dxµ0(dy)

)]

which depends on the common component µ0 only and, using the results in Appendix B,
we have ∫

R+×Y

( t1∫
0

kT (x; y)dx

)( t2∫
0

kN (x; y)dx

)
s2 v0(ds, dy)

proving point (i) of the theorem.
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While if (µ̃T , µ̃N ) are CRMs with hierarchical structure, according to results in Appendix
B, for l ∈ {T,N}, we have

E

[ t∫
0

λl(x)dx

]
=E

[
E
[ ∫

Y

t∫
0

kl(x; y)dx µ̃l(dy) | µ̃0

]]
= E

[ ∫
R+×Y

t∫
0

kl(x; y)dx s ṽl(ds, dy)

]
=

=

∫
R+

s ρl(s)ds

∫
R+×Y

t∫
0

kl(x; y)dx s ṽ0(ds, dy)

(5.4)

Moreover

E

[ t1∫
0

λT (x)dx

t2∫
0

λN (x)dx

]
= E

[
E
[ ∫

Y

t1∫
0

kT (x; y)dx µ̃T (dy)

∫
Y

t2∫
0

kN (x; y)dx µ̃N (dy) | µ̃0

]]
=

=

∫
R+

s ρT (s)ds

∫
R+

s ρN (s)ds

( ∫
R+×Y

t1∫
0

kT (t1; y)

t2∫
0

kN (t2; y) s2 ṽ0(ds, dy) +

+

∫
R+×Y

t1∫
0

kT (t1; y) s ṽ0(ds, dy)

∫
R+×Y

t2∫
0

kN (t2; y) s ṽ0(ds, dy)

)
(5.5)

Plugging (5.4) and (5.5) into (5.2) proves point (ii) of the theorem.

Example 5.2. Il µ̃N and µ̃T are gamma GM-dependent CRMs and the two kernels are of OU type,
i.e., kT (t; y) = kN (t; y) = 2ke−k(t−y)

1{t≥y}, then

Cov(Ti(t1), Nj(t2)) =

∫
Y∩{y : y≤min{t1,t2}}

c 4 (1− e−k(t1−y)) (1− e−k(t2−y))P0(dy)

5.3 Posterior characterization

In this section we provide a posterior characterisation of the vector of CRMs and of the
intensity functions. The results are conditional to some appropriate auxiliary random vari-
ables both for the GM-dependent and the hierarchical priors and they can be used to make
inference through the MCMC algorithm in the next section. For sake of exposition in the
remaining of this chapter we assume equal marginals for the two intensities and, in partic-
ular, kT (·; ·) = kN (·; ·) = k(·; ·). It is important to stress that such assumption may often be
unrealistic in real applications, however extensions beyond this assumption can easily be
constructed, as done for instance later in Section 6.4 of the next chapter using multiplica-
tive terms for the two intensities. When this strategy will be applied the results derived
here are extended straightforwardly.

144



5.3. POSTERIOR CHARACTERIZATION

5.3.1 Likelihood

We denote the collection of the observation points as t = {ti,j : j = 1, . . .mi, i = 1, . . . n}.
The marginal likelihood function for the observation times is obtained as product across i of
the likelihood of the observed event times in the time interval [0, Ci) for the inhomogeneous
PPs Ti(t):

L(µ̃T ; t) =

n∏
i=1

{
e
−
Ci∫
0

∫
Y
k(t; y)µ̃T (dy)dt mi∏

j=1

∫
Y

k(ti,j ; y)µ̃T (dy)

}

We define xi,j = Ni,j−Ni,j−1, ∀j and ∀i, and denote the collection of incremental counts as
x = {xi,j : j = 1, . . .mi, i = 1, . . . n}. The incremental counts are conditionally indepen-
dent realizations of Poisson random variables:

xi,j | t, µ̃N
ind∼ Poisson

 ti,j∫
ti,j−1

∫
Y

k(t; y)µ̃N (dy)dt


So that the likelihood function for the counts, conditional on the observation points, is

L(µ̃N ;x | t) =

n∏
i=1

mi∏
j=1

e−
ti,j∫

ti,j−1

∫
Y
k(t; y)µ̃N (dy)dt

× 1

xi,j !

( ti,j∫
ti,j−1

∫
Y

k(t; y)µ̃N (dy)dt

)xi,j

Therefore, the joint likelihood can be rewritten as

L(µ̃T , µ̃N ; t,x) = e
−

∫
Y
KT (y)µ̃T (dy)

e
−

∫
Y
KN (y)µ̃N (dy)

×

×
n∏
i=1

mi∏
j=1

[∫
Y

k(ti,j ; y)µ̃T (dy)
1

xi,j !

( ∫
Y

Hi,j(y)µ̃N (dy)

)xi,j] (5.6)

where KT (y) =
n∑
i=1

Ci∫
0

k(t; y)dt, KN (y) =
n∑
i=1

ti,mi∫
0

k(t; y)dt and Hi,j(y) =
ti,j∫

ti,j−1

k(t; y)dt.

We introduce some latent random variables Yl = {Yi,j,l : j = 1, . . . ,mi , i = 1, . . . , n} for
l ∈ {T,N} to simplify the expression in (5.6) removing the integrals, such that the joint law
of (T ,X,YT ,YN ), conditionally on µ̃T , µ̃N is given by

L(µ̃T , µ̃N ; t,x,yT ,yN ) = e
−

∫
Y
KT (y)µ̃T (dy)

e
−

∫
Y
KN (y)µ̃N (dy)

×

×
n∏
i=1

mi∏
j=1

[
k(ti,j ; yi,j,T )µ̃T (dyi,j,T )

1

xi,j !

(
Hi,j(yi,j,N )µ̃N (dyi,j,N )

)xi,j ] (5.7)
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5.3.2 GM-dependent CRMs posterior law

By discreteness of µ̃T and µ̃N , there will be ties between the auxiliary variables Yi,j,l’s. We
denote the distinct values in yT and yN respectively as

{y∗1,T , . . . , y∗kT ,T , y
∗
1, . . . , y

∗
k} {y∗1,N , . . . , y∗kN ,N , y

∗
1, . . . , y

∗
k}

with {y∗1,T , . . . , y∗kT ,T } ∩ {y
∗
1,N , . . . , y

∗
kN ,N
} = ∅.

We define the frequencies of the first collection yT as

nh =
∑
i

∑
j

1(yi,j,T = y∗h,T ) and qm =
∑
i

∑
j

1(yi,j,T = y∗m)

and the counts corresponding to the second collection yN as

x′r =
∑
(i,j) :

yi,j,N=y∗r,N

xi,j and x′′m =
∑
(i,j) :

yi,j,N=y∗m

xi,j

Moreover, let us introduce two additional independent sequences of i.i.d auxiliary random
variables VT = (Vh,T )kTh=1 and VN = (Vr,N )kNr=1 such that

P[Vi,l = 0] = 1− P[Vi,l = 1] = z for ∀i = 1, . . . , kl and l ∈ T,N

Theorem 5.1. Let Q(t,x,yT ,yN ) =
n∏
i=1

mi∏
j=1

k(ti,j ; yi,j,T ) 1
xi,j !

Hi,j(yi,j,N )xi,j , the probability dis-

tribution of (T , X, YN , YZ) conditionally on VT and VN equals

π(t,x,yT ,yN |VT ,VN ) =Q(t,x,yT ,yN ) e−c ψz(KT ,KN )(1− z)k ckT+kN+k ×

×
kT∏
h=1

P0(dy∗h,T )

∫
R+

snh e−s (KT (y∗h,T )+KN (y∗h,T )Vh,T )ρ(s)ds×

×
kN∏
r=1

P0(dy∗r,N )

∫
R+

sx
′
r e−s (KT (y∗r,N )Vr,N+KN (y∗r,N ))ρ(s)ds×

×
k∏

m=1

P0(dy∗m)

∫
R+

sqm+x′′m e−s (KT (y∗m)+KN (y∗m))ρ(s)ds

Proof. The joint distribution is obtained taking the expected value of the likelihood in (5.7)
with respect to the distribution of the vector of CRMs.

π(t,x,yT ,yN ) = E[L(µ̃T , µ̃N ; t,x,yT ,yN )].

Define: Y∗ = Y \ {dy∗1,T , . . . , dy∗kT ,T , dy
∗
1,N , . . . , dy

∗
kN ,N

, dy∗1, . . . , dy
∗
k} where dy = [y, y + ε)
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with ε > 0, the likelihood in (5.7) can be rewritten as

L(µ̃T , µ̃N ; t,x,yT ,yN ) = Q(t,x,yT ,yN ) e
−

∫
Y∗
KT (y)µ̃T (dy)−

∫
Y∗
KN (y)µ̃N (dy)

×

×
kT∏
h=1

e−KT (y∗h,T )µ̃T (dy∗h,T )−KN (y∗h,T )µ̃N (dy∗h,T )µ̃T (dy∗h,T )nh×

×
kN∏
r=1

e−KT (y∗r,N )µ̃T (dy∗r,N )−KN (y∗r,N )µ̃N (dy∗r,N )µ̃N (dy∗r,N )x
′
r×

×
k∏

m=1

e−KT (y∗m)µ̃T (dy∗m)−KN (y∗m)µ̃N (dy∗m)µ̃T (dy∗m)qm µ̃N (dy∗m)x
′′
m

For ε arbitrarily small, the intervals dy∗ are disjoint, thus the expected value can be rewrit-
ten as

E

[
L(µ̃T , µ̃N ; t,x,yT ,yN )

]
= Q(t,x,yT ,yN ) E

[
e
−

∫
Y∗
KT (y)µ̃T (dy)−

∫
Y∗
KN (y)µ̃N (dy)

]
×

×
kT∏
h=1

E

[
e−KT (y∗h,T )µ̃T (dy∗h,T )−KN (y∗h,T )µ̃N (dy∗h,T )µ̃T (dy∗h,T )nh

]
×

×
kN∏
r=1

E

[
e−KT (y∗r,N )µ̃T (dy∗r,N )−KN (y∗r,N )µ̃N (dy∗r,N )µ̃N (dy∗r,N )x

′
r

]
×

×
k∏

m=1

E

[
e−KT (y∗m)µ̃T (dy∗m)−KN (y∗m)µ̃N (dy∗m)µ̃T (dy∗m)qm µ̃N (dy∗m)x

′′
m

]
(5.8)

Notice that the expectations in (5.8) are given by the following four equations

E
[
e
−

∫
Y∗
KT (y)µ̃T (dy)−

∫
Y∗
KN (y)µ̃N (dy)

]
= e−cψz(KT (y)1Y∗ ,KN (y)1Y∗ )

E
[
e−KT (y∗h,T )µ̃T (dy∗h,T )−KN (y∗h,T )µ̃N (dy∗h,T )µ̃T (dy∗h,T )nh,T

]
=

= (−1)nh
∂nh

∂γnh
E
[
e−γµ̃T (dy∗h,T )−KN (y∗h,T )µ̃N (dy∗h,T )

]∣∣∣∣∣
γ=KT (y∗h,T )

=

= (−1)nh
∂nh

∂γnh
e
−cψz(γ1dy∗

h,T
,KN (y)1dy∗

h,T
)

∣∣∣∣∣
γ=KT (y∗h,T )

(5.9)
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E
[
e−KT (y∗r,N )µ̃T (dy∗r,N )−KN (y∗r,N )µ̃N (dy∗r,N )µ̃N (dy∗r,N )x

′
r

]
=

= (−1)x
′
r
∂x
′
r

∂γx′r
e
−cψz(KT (y)1dy∗

r,N
,γ1dy∗

r,N
)

∣∣∣∣∣
γ=KN (y∗r,N )

(5.10)

E
[
e−KT (y∗m)µ̃T (dy∗m)−KN (y∗m)µ̃N (dy∗m)µ̃T (dy∗m)qm µ̃N (dy∗m)x

′′
m

]
=

= (−1)qm+x′′m
∂qm+x′′m

∂γqm1 ∂γ
x′′m
2

e−cψz(γ11dy∗m ,γ21dy∗m )

∣∣∣∣∣γ1=KT (y∗m)
γ2=KN (y∗m)

(5.11)

Applying Faà di Bruno’s formula, as shown in Appendix C, equations (5.9)-(5.11) can be
rewritten respectively as

(−1)nh
∂nh

∂γnh
e
−cψz(γ1dy∗

h,T
,KN (y)1dy∗

h,T
)

∣∣∣∣∣
γ=KT (y∗h,T )

= e−cψz(KT (y∗h,T ),KN (y∗h,T ))×

× c P0(dy∗h,T )

{
z

∫
R+

snh e−sKT (y∗h,T )ρ(s)ds+

+ (1− z)
∫
R+

snh e−s (KT (y∗h,T )+KN (y∗h,T ))ρ(s)ds

}
+ o(P0(dy∗h,T ))

(5.12)

(−1)x
′
r
∂x
′
r

∂γx′r
e
−cψz(KT (y)1dy∗

r,N
,γ1dy∗

r,N
)

∣∣∣∣∣
γ=KN (y∗r,N )

= e−cψz(KT (y∗r,N ),KN (y∗r,N ))×

× c P0(dy∗r,N )

{
z

∫
R+

sx
′
r e−sKN (y∗r,N )ρ(s)ds+

+ (1− z)
∫
R+

sx
′
r e−s (KT (y∗r,N )+KN (y∗r,N ))ρ(s)ds

}
+ o(P0(dy∗r,N ))

(5.13)

equations (5.9)-(5.11) come from iteratively applying: e−cx · x = (−1) ∂
∂γ

e−γx
∣∣∣
γ=c
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(−1)qm+x′′m
∂qm+x′′m

∂γqm1 ∂γ
x′′m
2

e−cψz(γ11dy∗m ,γ21dy∗m )

∣∣∣∣∣γ1=KT (y∗m)
γ2=KN (y∗m)

=

= e−cψz(KT (y∗m),KN (y∗m))×

× c P0(dy∗m)

{
(1− z)

∫
R+

sqm+x′′m e−s (KT (y∗m)+KN (y∗m))ρ(s)ds

}

+ o(P0(dy∗m))

Lastly, we use the auxiliary variables VT and VN , so that equations (5.12) and (5.13) condi-
tional on them simplify to

(−1)nh
∂nh

∂γnh
e
−cψz(γ1dy∗

h,T
,KN (y)1dy∗

h,T
)

∣∣∣∣∣
γ=KT (y∗h,T )

= e−cψz(KT (y∗h,T ),KN (y∗h,T ))×

× c P0(dy∗h,T )

∫
R+

snh e−s (KT (y∗h,T )+KN (y∗h,T )Vh,T )ρ(s)ds+ o(P0(dy∗h,T ))

(−1)x
′
r
∂x
′
r

∂γx′r
e
−cψz(KT (y)1dy∗

r,N
,γ1dy∗

r,N
)

∣∣∣∣∣
γ=KN (y∗r,N )

= e−cψz(KT (y∗r,N ),KN (y∗r,N ))×

× c P0(dy∗r,N )

∫
R+

sx
′
r e−s (KT (y∗r,N )Vr,N+KN (y∗r,N ))ρ(s)ds+ o(P0(dy∗r,N ))

Putting everything together and letting ε go to zero, we get

E

[
L(µ̃T , µ̃N ;x, t,yT ,yN |VT ,VN )

]
= Q(t,x,yT ,yN ) e−c ψz(KT ,KN )(1− z)k ckT+kN+k ×

×
kT∏
h=1

P0(dy∗h,T )

∫
R+

snh e−s (KT (y∗h,T )+KN (y∗h,T )Vh,T )ρ(s)ds×

×
kN∏
r=1

P0(dy∗r,N )

∫
R+

sx
′
r e−s (KT (y∗r,N )Vr,N+KN (y∗r,N ))ρ(s)ds×

×
k∏

m=1

P0(dy∗m)

∫
R+

sqm+x′′m e−s (KT (y∗m)+KN (y∗m))ρ(s)ds
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Theorem 5.2. The posterior distribution of µ̃T and µ̃N , conditional on T , X , YT , YN , VT and
VN , equals the distribution of the vector of CRMs

(µ̃∗T , µ̃
∗
N ) +

(
kT∑
h=1

Jh,T δY ∗h,T ,

kT∑
h=1

Jh,T Vh,T δY ∗h,T

)

+

(
kN∑
r=1

Jh,N Vh,N δY ∗h,N ,

kN∑
r=1

Jh,N δY ∗h,N

)

+

(
k∑

m=k

Jm δY ∗m ,

k0∑
m=1

Jm δY ∗m

)

where µ̃∗T and µ̃∗N are CRMs such that:

µ̃∗T
d
= µ∗0 + µ∗T

µ̃∗N
d
= µ∗0 + µ∗N

where µ∗0, µ∗T and µ∗N are independent CRMs with Lévy intensities respectively equal to:

ν∗0(ds, dy) =c (1− z) e−s (KT (y)+KN (y))P0(dy) ρ(s)ds

ν∗T (ds, dy) =c z e−sKT (y)P0(dy) ρ(s)ds

ν∗N (ds, dy) =c z e−sKN (y)P0(dy) ρ(s)ds

The jumps J1,T , . . . , JkT ,T , J1,N , . . . , JkN ,N and J1, . . . , Jk are mutually independent and inde-
pendent from µ̃∗T and µ̃∗N and have densities:

fJh,T (s) ∝ snh e−s (KT (Y ∗h,T )+KN (Y ∗h,T )Vh,T )ρ(s)ds

fJr,N (s) ∝ sx′r e−s (KT (Y ∗r,N )Vr,N+KN (Y ∗h,T ))ρ(s)ds

fJk(s) ∝ sqm+x′′m e−s (KT (Y ∗m)+KN (Y ∗m)ρ(s)ds

Proof. The posterior distribution of µ̃T and µ̃N is uniquely determined by the posterior
joint Laplace functional tansform:

E[e−µ̃T (fT )−µ̃N (fN ) | T ,X,YT ,YN ,VT ,VN )] =

=
E[e−µ̃T (ft)−µ̃N (fN )L(µ̃T , µ̃N ; t,x,yT ,yN | VT ,VN )]

E[L(µ̃T , µ̃N ; t,x,yT ,yN | VT ,VN )]

where fl : Y → R+ and µ̃(f) =
∫
Y
f(y)µ̃(dy). The expected value at the denominator is

the probability distribution provided by Theorem 5.1 and the numerator can be rewritten
analogously as:
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E

[
e−µ̃T (fT )−µ̃N (fN )L(µ̃T , µ̃N ; t,x,yT ,yN | VT ,VN )

]
=

= Q(t,x,yT ,yN ) e−c ψz(KT+fT ,KN+fN )(1− z)k ckT+kN+k ×

×
kT∏
h=1

P0(dy∗h,T )

∫
R+

snh e−s (KT (y∗h,T )+fT (y∗h,T )+[KN (y∗h,T )+fN (y∗h,T )]Vh,T )ρ(s)ds×

×
kN∏
r=1

P0(dy∗r,N )

∫
R+

sx
′
r e−s ([KT (y∗r,N )+fT (y∗r,N )]Vr,N+KN (y∗r,N )+fN (y∗r,N ))ρ(s)ds×

×
k∏

m=1

P0(dy∗m)

∫
R+

sqm+x′′m e−s (KT (y∗m)+fT (y∗m)+KN (y∗m)+fN (y∗m))ρ(s)ds

So that, when ε goes to 0 the posterior joint Laplace functional transform is equal to

E[e−µ̃T (fT )−µ̃N (fN ) |T ,X,YT ,YN ,VT ,VN ] =

= e−c ψz(KT+fT ,KN+fN )+cψz(KT ,KN ) ×

×
kT∏
h=1

∫
R+

snh e−s (KT (Y ∗h,T )+fT (Y ∗h,T )+[KN (Y ∗h,T )+fN (Y ∗h,T )]Vh,T )ρ(s)ds∫
R+

snh e−s (KT (Y ∗h,T )+KN (Y ∗h,T )Vh,T )ρ(s)ds
×

×
kN∏
r=1

∫
R+

sx
′
r e−s ([KT (Y ∗r,N )+fT (Y ∗r,N )]Vr,N+KN (Y ∗r,N )+fN (Y ∗r,N ))ρ(s)ds∫

R+

sx′r e−s (KT (Y ∗r,N )Vr,N+KN (Y ∗r,N ))ρ(s)ds
×

×
k∏

m=1

∫
R+

sqm+x′′m e−s (KT (Y ∗m)+fT (Y ∗m)+KN (Y ∗m)+fN (Y ∗m))ρ(s)ds∫
R+

sqm+x′′m e−s (KT (Y ∗m)+KN (Y ∗m))ρ(s)ds

where the first factor is the joint Laplace functional transform of the two CRMs µ̃∗T and µ̃∗N .
Moreover, for the second factor we have∫
R+

snh e−s (KT (Y ∗h,T )+fT (Y ∗h,T )+[KN (Y ∗h,T )+fN (Y ∗h,T )]Vh,T )ρ(s)ds∫
R+

snh e−s (KT (Y ∗h,T )+KN (Y ∗h,T )Vh,T )ρ(s)ds
= E[e−s (fT (Y ∗h,T )+fN (Y ∗h,T )Vh,T ) | Vh,T ]

which is the conditional Laplace transform of the vector (s, Vh,T · s), where s has density
proportional to

snh e−s (KT (Y ∗h,T )+KN (Y ∗h,T )Vh,T )ρ(s)ds

Similar interpretation can be applied to the last two factors, concluding the proof.
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Corollary 5.1. For any t > 0, the posterior estimate of the intensity function λN (t) conditionally
given the observations T and X and the auxiliary variables (Yl)l∈{T,N} and (Vl)l∈{T,N} under a
square loss function is∫

R+×Y

s kN (t; y)e−sKN (y) [(1− z)e−sKT (y) + z] ρ(s)ds c P0(dy)+

+

kT∑
h=1

Vh,T kN (t;Y ∗h,T )

∫
R+

ufJh,T (u)du+

+

kN∑
r=1

kN (t;Y ∗r,N )

∫
R+

ufJr,N (u)du+

+

k0∑
m=1

kN (t;Y ∗m)

∫
R+

ufJk(u)du

(5.14)

Proof.

E[λN (t) | T ,X,YT ,YN ,VT ,VN ] =

= E

[∫
Y

kN (t; y)µ̃N (dy) | T ,X,YT ,YN ,VT ,VN

]
=

= E

[∫
Y

kN (t; y)µ̃∗N (dy)

]
+

kT∑
h=1

E[Jh,T ]Vh,T kN (t;Y ∗h,T )+

+

kN∑
r=1

E[Jr,N ] kN (t;Y ∗r,N ) +

k0∑
m=1

E[Jm] kN (t;Y ∗m)

where

E

[∫
Y

kN (t; y)µ̃∗N (dy)

]
= E

[∫
Y

kN (t; y)µ∗0(dy)

]
+ E

[∫
Y

kN (t; y)µ∗N (dy)

]

which, according to the results in Appendix B, becomes∫
R+×Y

s kN (t; y) v∗0(ds, dy) +

∫
R+×Y

s kN (t; y) v∗N (ds, dy)

substituiting the Lévy intensities provided by Theorem 5.2∫
R+×Y

s kN (t; y)e−sKN (y) [(1− z)e−sKT (y) + z] ρ(s)ds c P0(dy)
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while E[Jh,T ], E[Jr,N ] and E[Jm] can be computed using their respective densities provided
by Theorem 5.2 and the thesis follows.

5.3.3 Hierarchical CRMs posterior law

Also in the case of hierarchical CRMs, by discretness of µ̃T and µ̃N , there will be ties be-
tween the auxiliary random variables Yi,j,l’s. We denote the joint collection of the distinct
values in yT and yN as {y∗1, . . . , y∗k}. Moreover, we define the frequencies of yT and the
counts of yN respectively as

nh,T =
∑
i

∑
j

1(yi,j,T = y∗h) and nh,N =
∑
(i,j) :

yi,j,N=y∗h

xi,j

Notice that differently from the previous section both frequencies and counts can be equal
to zero.

Moreover, let us introduce two addictional vectors of latent random variables

Cl = {Ci,j,l : j = 1, . . . ,mi , i = 1, . . . , n} for l ∈ {T,N}

such that in the Chinese franchise metaphor they will correspond to the labels of the tables.

Theorem 5.3. Let Q(t,x,yT ,yN ) =
n∏
i=1

mi∏
j=1

k(ti,j ; yi,j,T ) 1
xi,j !

Hi,j(yi,j,N )xi,j , the probability dis-

tribution of (T, X, YN , YZ) conditionally on CT and CN equals

π(T, X, YN , YZ |CT , CN ) = Q(t,x,yT ,yN ) ck0

k∏
h=1

P0(dy∗h)×

e
−c0

∫
Y
ψ(0)(ψ(T )(KT (y))+ψ(N)(KN (y)))P0(dy)

×

×
k∏

h=1

τ
(0)
rT,h+rN,h

(
ψ(T )(KT (y∗h)) + ψ(N)(KN (y∗h))

)
×

×
∏
l∈T,N

k∏
h=1

(
nh,l

ql,h,1, · · · , ql,h,rl,h

)
1

rl,h!

rl,h∏
c=1

τ (l)
ql,h,c

(Kl(y
∗
h))

where, according to the Chinese franchise metaphor, rl,h denote the number of tables eating dish y∗h
in restaurant l, while ql,h,c denotes the number of customers in restaurant l seated at the c-th table
that serves dish y∗h.

Proof. The density π(T, X, YN , YZ) can be computed as the expected value of the quantity
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in (5.7) as follows

E

[
E
[
L(µ̃T , µ̃N ;t,x,yT ,yN ) | µ̃0

] ]
= Q(t,x,yT ,yN )×

×E

[
E
[
e
−

∫
Y
KT (y)µ̃T (dy) k∏

h=1

µT (dy∗h)nh,T | µ̃0

]
×

×E
[
e
−

∫
Y
KN (y)µ̃N (dy) k∏

h=1

µN (dy∗h)nh,N | µ̃0

] ]
(5.15)

Set, as before Y∗ = Y \ {dy∗1, . . . , dy∗k} where dy = [y, y + ε) for ε > 0 and arbitrarily small
so that the intervals dy∗ are disjoint. The last two rows in (5.15) equals

E

[
E
[
e
−

∫
Y∗
KT (y)µ̃T (dy)

| µ̃0

]
E
[ k∏
h=1

e−KT (y∗h)µ̃T (dy∗h)µT (dy∗h)nh,T | µ̃0

]
×

×E
[
e
−

∫
Y∗
KN (y)µ̃N (dy)

| µ̃0

]
E
[ k∏
h=1

e−KN (y∗h)µ̃N (dy∗h)µN (dy∗h)nh,N | µ̃0

] ]
=

= E

[
e
−

∫
Y∗
ψ(T )(KT (y))µ̃0(dy) k∏

h=1

(−1)nh,T
∂nh,T

∂γnh,T
E
[
e−γµ̃T (dy∗h) | µ̃0

]∣∣∣∣∣
γ=KT (y∗h)

×

× e
−

∫
Y∗
ψ(N)(KN (y))µ̃0(dy) k∏

h=1

(−1)nh,N
∂nh,N

∂γnh,N
E
[
e−γµ̃N (dy∗h) | µ̃0

]∣∣∣∣∣
γ=KN (y∗h)

]
=

= E

[
e
−

∫
Y∗
ψ(T )(KT (y))µ̃0(dy) k∏

h=1

(−1)nh,T
∂nh,T

∂γnh,T
e−ψ

(T )(γ)µ̃0(dy∗h)

∣∣∣∣∣
γ=KT (y∗h)

×

× e
−

∫
Y∗
ψ(N)(KN (y))µ̃0(dy) k∏

h=1

(−1)nh,N
∂nh,N

∂γnh,N
e−ψ

(N)(γ)µ̃0(dy∗h)

∣∣∣∣∣
γ=KN (y∗h)

]

(5.16)

Applying Faà di Bruno’s formula, as shown in Appendix C, equation (5.16) can be rewritten
as

E

[
e
−

∫
Y∗
ψ(T )(KT (y))µ̃0(dy)−

∫
Y∗
ψ(N)(KN (y))µ̃0(dy)

]
×

×E

[
k∏

h=1

∏
l∈{T,N}

nh,l∑
rl,h=1

ξnh,l,l,rl,h(Kl(y
∗
h)) e−ψ

(l)(Kl(y
∗
h))µ̃0(dy∗h)µ̃0(dy∗h)rl,h

] (5.17)
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where ξnh,l,l,r(Kl(y
∗
h)) =

∑
(∗)

(
nh,l

q1,··· ,qr
)

1
r!τ

(l)
q1 (Kl(y

∗
h)) · · · τ (l)

qr (Kl(y
∗
h)), where τ

(l)
q (u) =∫

R+

sq e−suρl(s)ds and the sum (∗) runs over all vectors (q1, . . . , qr) of positive integers such

that
∑r

j=1 qj = nh,l, for l ∈ {T,N}. Computing the product in h and l and denoting
with r the set of all vectors corresponding to a term in the resulting summation: r =

{(rT,1, . . . , rT,k, rN,1, . . . , rN,k) : rl,h ∈ {1, . . . , nh,l}}, we get

∑
r

( ∏
l∈T,N

k∏
h=1

ξnh,l,l,rl,h(Kl(y
∗
h))

)
E

[
e
−

∫
Y∗
ψ(T )(KT (y))µ̃0(dy)−

∫
Y∗
ψ(N)(KN (y))µ̃0(dy)

]
×

×
k∏

h=1

E

[
e−[ψ(T )(KT (y∗h))−ψ(N)(KN (y∗h))]µ̃0(dy∗h)µ̃0(dy∗h)rT,h+rN,h

] (5.18)

Applying again Faà di Bruno’s formula, equation (5.15) equals

E

[
L(µ̃T , µ̃N ; t,x,yT ,yN )

]
= Q(t,x,yT ,yN ) ck0

k∏
h=1

P0(dy∗h)×

e
−c0

∫
Y
ψ(0)(ψ(T )(KT (y))+ψ(N)(KN (y)))P0(dy)

×

×
∑
r

[ ∏
l∈T,N

k∏
h=1

ξnh,l,l,rl,h(Kl(y
∗
h)) τrT,h+rN,h

(
ψ(T )(KT (y∗h)) + ψ(N)(KN (y∗h))

)]

+o(
k∏

h=1

P0(dy∗h))

(5.19)

susbstituting the expression of ξnh,l,l,r(Kl(y
∗
h)) we get

E

[
L(µ̃T , µ̃N ; t,x,yT ,yN )

]
= Q(t,x,yT ,yN ) ck0

k∏
h=1

P0(dy∗h)×

e
−c0

∫
Y
ψ(0)(ψ(T )(KT (y))+ψ(N)(KN (y)))P0(dy)

×

×
∑
r

[ ∏
l∈T,N

k∏
h=1

∑
(∗)

(
nh,l

q1, · · · , qrl,h

)
1

rl,h!
τ (l)
q1 (Kl(y

∗
h)) · · · τ (l)

qrl,h
(Kl(y

∗
h))

τ
(0)
rT,h+rN,h

(
ψ(T )(KT (y∗h)) + ψ(N)(KN (y∗h))

)]
+ o(

k∏
h=1

P0(dy∗h))
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computing the products in l and h

E

[
L(µ̃T , µ̃N ; t,x,yT ,yN )

]
= Q(t,x,yT ,yN ) ck0

k∏
h=1

P0(dy∗h)×

e
−c0

∫
Y
ψ(0)(ψ(T )(KT (y))+ψ(N)(KN (y)))P0(dy)

×

×
∑
r

∑
q

[ ∏
l∈T,N

k∏
h=1

(
nh,l

ql,h,1, · · · , ql,h,rl,h

)
1

rl,h!
τ (l)
ql,h,1

(Kl(y
∗
h)) · · · τ (l)

ql,h,rl,h
(Kl(y

∗
h))

τ
(0)
rT,h+rN,h

(
ψ(T )(KT (y∗h)) + ψ(N)(KN (y∗h))

)]
+ o(

k∏
h=1

P0(dy∗h))

Finally, we introduce the latent random variables CT and CN , to get rid of the sum over r
and q

π(T,X, YT , YN | CT , CN ) = E

[
L(µ̃T , µ̃N ; t,n,yT ,yN | CT ,CN )

]
=

=Q(t,x,yT ,yN ) ck0

k∏
h=1

P0(dy∗h)e
−c0

∫
Y
ψ(0)(ψ(T )(KT (y))+ψ(N)(KN (y)))P0(dy)

×

×
k∏

h=1

τ
(0)
rT,h+rN,h

(
ψ(T )(KT (y∗h)) + ψ(N)(KN (y∗h))

)
×

×
∏
l∈T,N

k∏
h=1

(
nh,l

ql,h,1, · · · , ql,h,rl,h

)
1

rl,h!
τ (l)
ql,h,1

(Kl(y
∗
h)) · · · τ (l)

ql,h,rl,h
(Kl(y

∗
h))+

+ o(
k∏

h=1

P0(dy∗h))

letting ε go to zero completes the proof.

Theorem 5.4. The posterior distribution of µ̃T and µ̃N , conditional on T , X , YT , YN , CT and CN
equals the distribution of the vector of CRMs

(µ̃∗T , µ̃
∗
N ) +

(
k∑

h=1

rT,h∑
c=1

JT,h,c δY ∗h ,

k∑
h=1

rN,h∑
c=1

JN,h,c δY ∗h

)

where µ̃∗T and µ̃∗N are CRMs such that:

µ̃∗l | µ̃∗0
ind∼ CRM(ν̃∗l )

156



5.3. POSTERIOR CHARACTERIZATION

for l ∈ {T,N}, with ν̃∗l (ds, dy) = e−sKl(y)ρl(s)dsµ̃
∗
0(dy) and µ̃∗0 is a CRMs such that:

µ̃∗0
d
= η∗0 +

k∑
h=1

IhδY ∗h

where η∗0 is a CRM with no fixed jumps and Lévy intensity given by

ν∗0(ds, dy) = e−s[ψ
(T )(KT (y))+ψ(N)(KN (y))]ρ0(s)ds c0 P0(dy)

and the jumps I1, . . . , Ik are mutually independent and independent from η∗0 and have density:

fIh(s) ∝ srT,h+rN,he−s[ψ
(T )(KT (Y ∗h ))+ψ(N)(KN (Y ∗h ))]ρ0(s)ds

Lastly, the sequences of independent jumps (JT,h,c)h,c and (JN,h,c)h,c are independent from one
another, independent from (µ̃∗T , µ̃

∗
N ) and have densities:

fJl,h,c(s) ∝ s
ql,h,ce−sKl(Y

∗
h )ρl(s)ds

Proof. The posterior of µ̃T and µ̃N is uniquely determined by

E[e−µ̃T (fT )−µ̃N (fN ) | T ,X,YT ,YN ,CT ,CN )] =

=
E[e−µ̃T (ft)−µ̃N (fN )L(µ̃T , µ̃N ; t,x,yT ,yN | CT ,CN )]

E[L(µ̃T , µ̃N ; t,x,yT ,yN | CT ,CN )]

(5.20)

where fl : Y→ R+ and µ̃(f) =
∫
Y
f(y)µ̃(dy).

The denominator is given by Theorem 5.3, while using the same techniques the numerator
can be rewritten as

E

[
e−µ̃T (ft)−µ̃N (fN )L(µ̃T , µ̃N ; t,x,yT ,yN | CT , CN )

]
= Q(t,x,yT ,yN )×

× ck0

k∏
h=1

P0(dy∗h) e
−c0

∫
Y
ψ(0)(ψ(T )(KT (y)+fT (y))+ψ(N)(KN (y)+fN (y))P0(dy)

×

×
k∏

h=1

τ
(0)
rT,h+rN,h

(
ψ(T )(KT (y∗h) + fT (y∗h)) + ψ(N)(KN (y∗h) + fN (y∗h))

)
×

×
∏

l∈{T,N}

k∏
h=1

(
nh,l

ql,h,1, · · · , ql,h,rl,h

)
1

rl,h!

rl,h∏
c=1

τ (l)
ql,h,c

(Kl(y
∗
h) + fl(y

∗
h))+

+ o(
k∏

h=1

P0(dy∗h))
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So equation (5.20) equals

E[e−µ̃T (fT )−µ̃N (fN ) |X,T ,YT ,YN ,CT ,CN )] =

exp

{
− c0

∫
Y

ψ(0)(ψ(T )(KT (y) + fT (y)) + ψ(N)(KN (y) + fN (y))P0(dy)+

c0

∫
Y

ψ(0)(ψ(T )(KT (y)) + ψ(N)(KN (y)))P0(dy)

}
×

×
k∏

h=1

τ
(0)
rT,h+rN,h

(
ψ(T )(KT (y∗h) + fT (y∗h)) + ψ(N)(KN (y∗h) + fN (y∗h))

)
τ

(0)
rT,h+rN,h

(
ψ(T )(KT (y∗h)) + ψ(N)(KN (y∗h))

) ×

×
∏

l∈{T,N}

k∏
h=1

rl,h∏
c=1

τ
(l)
ql,h,c(Kl(y

∗
h) + fl(y

∗
h))

τ
(l)
ql,h,c(Kl(y

∗
h))

where the first two factors are the joint Laplace functional of the two CRMs µ̃∗T and µ̃∗N .
Moreover, for the last factor we have

τ
(l)
ql,h,c(Kl(y

∗
h) + fl(y

∗
h))

τ
(l)
ql,h,c(Kl(y

∗
h))

= [e−s fl(y
∗
h)]

is the Laplace transform of Jl,h,c.

5.4 Posterior Inference

In this section, we derive a MCMC marginal sampler for the GM-dependent prior: firstly, in
presence of general kernel, intensity and base distribution and, secondly, using OU-kernel,
gamma CRMs and uniform base distribution.

5.4.1 GM-dependent CRMs marginal sampler

Full conditional distributions for the latent variables

We provide in this section the full conditional distribution for the vector of latent variables
(Yi,j,l, Vi,j,l) for j = 1, . . . ,mi, i = 1, . . . , n and l ∈ {T,N}. Firstly, we have that

P[Yi,j,T ∈ dy | T ,X,Y
−(i,j)
T ,YN ,V

−(i,j)
T ,VN ]

= w0G0(dy) +

k
−(i,j,T )
T∑
h=1

wh,T δY ∗h,T (dy) +

kN∑
r=1

wr,N δY ∗r,N (dy) +

k−(i,j,T )∑
m=1

wm δY ∗m(dy)
(5.21)

where −(i, j) and −(i, j, T ) are used to denote the fact that the element arising from the
j-th observation for the observational process of the i-th unit has been removed. Using the
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result from Theorem 5.2 and denoting with (Yi,j,T = new) the event that Yi,j,T does not
coincide with any element in Y −(i,j)

T and YN , we have

G0(dy) =P[Yi,j,T ∈ dy | Yi,j,T = new,T ,X,Y
−(i,j)
T ,YN ,V

−(i,j)
T ,VN ]

∝P[Yi,j,T ∈ dy,T ,X,Y
−(i,j)
T ,YN | Yi,j,T = new,V −(i,j)

T ,VN ]

∝ z
+∞∫
0

se−sKT (y)ρ(s)ds k(ti,j ; y)P0(dy)

+ (1− z)
+∞∫
0

se−s (KT (y)+KN (y))ρ(s)ds k(ti,j ; y)P0(dy)

(5.22)

w0 =P[Yi,j,T = new | T ,X,Y
−(i,j)
T ,YN ,V

−(i,j)
T ,VN ]

=

∫
Y

P[Yi,j,T ∈ dy, Yi,j,T = new | T ,X,Y
−(i,j)
T ,YN ,V

−(i,j)
T ,VN ]dy

=

∫
Y

P[Yi,j,T ∈ dy, Yi,j,T = new,T ,X,Y
−(i,j)
T ,YN | V

−(i,j)
T ,VN ]

P[T ,X,Y
−(i,j)
T ,YN | V

−(i,j)
T ,VN ]

dy

∝ c z
∫
Y

+∞∫
0

se−sKT (y)ρ(s)ds k(ti,j ; y)P0(dy)

+ c (1− z)
∫
Y

+∞∫
0

se−s (KT (y)+KN (y))ρ(s)ds k(ti,j ; y)P0(dy)

(5.23)

wh,T =P[Yi,j,T = Y ∗h,T | T ,X,Y
−(i,j)
T ,YN ,V

−(i,j)
T ,VN ]

=
P[Yi,j,T = Y ∗h,T ,T ,X,Y

−(i,j)
T ,YN | V

−(i,j)
T ,VN ]

P[T ,X,Y
−(i,j)
T ,YN | V

−(i,j)
T ,VN ]

∝

+∞∫
0

sn
−(i,j)
h +1e−s(KT (Y ∗h,T )+KN (Y ∗h,T )Vh,T )ρ(s)ds

+∞∫
0

sn
−(i,j)
h e−s(KT (Y ∗h,T )+KN (Y ∗h,T )Vh,T )ρ(s)ds

k(ti,j ;Y
∗
h,T )

(5.24)

wr,N∝(1− z)

+∞∫
0

sx
′
r+1e−s(KT (Y ∗r,N )Vr,N+KN (Y ∗r,N ))ρ(s)ds1{Vr,N=1}

+∞∫
0

sx′re−s(KT (Y ∗r,N )Vr,N+KN (Y ∗r,N ))ρ(s)ds

k(ti,j ;Y
∗
r,N ) (5.25)
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wm∝

+∞∫
0

sq
−(i,j)
m +x′′m+1e−s(KT (Y ∗m)+KN (Y ∗m))ρ(s)ds

+∞∫
0

sq
−(i,j)
m +x′′me−s(KT (Y ∗m)+KN (Y ∗m))ρ(s)ds

k(ti,j ;Y
∗
m) (5.26)

Secondly, consider the conditional distribution P[VT | T ,X,YT ,YN ,V
−(i,j)
T ,VN ], if Yi,j,T

equals some element in Y −(i,j)
T and/or YN , then the distribution is degenerate because

VT = V
−(i,j)
T . Contrary, if Yi,j,T does not coincide with any element in Y −(i,j)

T and YN , i.e.
a new value yh,T has been sampled according to (5.22), the full conditional of Vh,T for h
such that Yi,j,T = yh,T is

P[Vh,T = v | Yi,j,T = yh,T ,T ,X,Y
−(i,j)
T ,YN ,V

−(i,j)
T ,VN ]

∝P[Vh,T = v]P[T ,X,YT ,YN | VT ,VN ]

∝ z(1−v) (1− z)v
+∞∫
0

s e−s(KT (yh,T )+KN (yh,T ) v)ρ(s)ds

(5.27)

Analogously, we find the full conditional distribution for (Yi,j,N , Vi,j,N ) given by:

P[Yi,j,N ∈ dy | T ,X,YT ,Y
−(i,j)
N ,VT ,V

−(i,j)
N ]

= p0H0(dy) +

kT∑
h=1

ph,T δY ∗h,T (dy) +

k
−(i,j,N)
N∑
r=1

pr,N δY ∗r,N (dy) +
k−(i,j,N)∑
m=1

pm δY ∗m(dy)
(5.28)

where

H0(dy) =P[Yi,j,N ∈ dy | Yi,j,N = new,T ,X,YT ,Y
−(i,j)
N ,VT ,V

−(i,j)
N ]

∝ z
+∞∫
0

sxi,je−sKN (y)ρ(s)ds
1

xi,j !
Hi,j(y)xi,jP0(dy)

+ (1− z)
+∞∫
0

sxi,je−s (KT (y)+KN (y))ρ(s)ds
1

xi,j !
Hi,j(y)xi,jP0(dy)

(5.29)
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p0 =P[Yi,j,N = new | T ,X,YT ,Y
−(i,j)
N ,VT ,V

−(i,j)
N ]

∝ c z
∫
Y

+∞∫
0

sxi,je−sKN (y)ρ(s)ds
1

xi,j !
Hi,j(y)xi,jP0(dy)

+ c (1− z)
∫
Y

+∞∫
0

sxi,je−s (KT (y)+KN (y))ρ(s)ds
1

xi,j !
Hi,j(y)xi,jP0(dy)

(5.30)

ph,T = P[Yi,j,N = Y ∗h,T | T ,X,YT ,Y
−(i,j)
N ,VT ,V

−(i,j)
N ]

∝(1− z)

+∞∫
0

snh+xi,je−s(KT (Y ∗h,T )+KN (Y ∗h,T )Vh,T )ρ(s)ds1{Vh,T=1}

+∞∫
0

snhe−s(KT (Y ∗h,T )+KN (Y ∗h,T )Vh,T )ρ(s)ds

1

xi,j !
Hi,j(Y

∗
h,T )xi,j

(5.31)

pr,N∝

+∞∫
0

sx
′−(i,j)
r +xi,je−s(KT (Y ∗r,N )Vr,N+KN (Y ∗r,N ))ρ(s)ds

+∞∫
0

sx′
−(i,j)
r e−s(KT (Y ∗r,N )Vr,N+KN (Y ∗r,N ))ρ(s)ds

1

xi,j !
Hi,j(Y

∗
r,N )xi,j (5.32)

pm∝

+∞∫
0

sqm+x′′−(i,j)
m +xi,je−s(KT (Y ∗m)+KN (Y ∗m))ρ(s)ds

+∞∫
0

sqm+x′′
−(i,j)
m e−s(KT (Y ∗m)+KN (Y ∗m))ρ(s)ds

1

xi,j !
Hi,j(Y

∗
m)xi,j (5.33)

Lastly, if Yi,j,N is different than any element in Y −(i,j)
N and YT , the full conditional of Vr,N

for r such that Yi,j,N = yr,N is not degenerate and is given by

P[Vr,N = v | Yi,j,N = yr,N ,T ,X,YT ,Y
−(i,j)
N ,VT ,V

−(i,j)
N ]

∝ z(1−v) (1− z)v
+∞∫
0

s e−s(KT (yr,N )v+KN (yr,N ))ρ(s)ds
(5.34)

Full conditional distributions for the hyperparameters

Until now, we assumed the hyperparameters c and z to be fixed, but one may desire to use
some hyperprior distribution for those. We derive here the full conditional distributions
for the concentration parameter c and for the dependence parameter z, in the usual case in
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which the two parameters are a priori independent

L(z | T ,X,YT ,YN ,VT ,VN , c) ∝ L(z) (1− z)k e−c ψz(KT ,KN ) (5.35)

where L(z) denotes the prior distribution for z. Analogously, we have

L(c | T ,X,YT ,YN ,VT ,VN , z) ∝ L(c) ck1+k2+k e−c ψz(KT ,KN ) (5.36)

Algorithm

Algorithm 2: Algorithm for the estimate of λN under general kernel and CRMs
Result: Posterior mean of λN
Set initial values for (,Y

(0)
T ,Y

(0)
N ,V

(0)
T ,V

(0)
N , z(0), c(0));

for iter=1 to burnin+tot iter do
Sample (Y

(iter)
T ,V

(iter)
T ) according to (5.21)-(5.27);

Sample (Y
(iter)
N ,V

(iter)
N ) according to (5.28)-(5.34);

Sample (c(iter), z(iter)) according to (5.35)-(5.36);
if iter>burnin then

Compute λ(iter)
N according to (5.14);

end
end

Compute λ̂N = 1
tot iter

∑
λ

(iter)
N

5.4.2 GM-dependent gamma CRMs with Ornstein-Uhlenbeck kernel and uni-
form base-measure

Now, we set ρ(s)ds = e−ss−1, k(t; y) = 2ke−k(t−y)
1{t≥y} and P0 ∼ U (0, T ).

Posterior estimate of the event intensity

First of all, we derive the posterior estimate λ̂N (t) of the intensity function λN (t), condition-
ally given the observations T andX and the auxiliary variables (Yl)l∈{T,N} and (Vl)l∈{T,N}
under a square loss function.

From Corollary 5.1, we have that
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λ̂N (t) =

∫
R+×Y

s kN (t; y)e−sKN (y) [(1− z)e−sKT (y) + z] ρ(s)ds c P0(dy)+

+

kT∑
h=1

Vh,T kN (t;Y ∗h,T )

∫
R+

ufJh,T (u)du+

+

kN∑
r=1

kN (t;Y ∗r,N )

∫
R+

ufJr,N (u)du+

+

k0∑
m=1

kN (t;Y ∗m)

∫
R+

ufJk(u)du

(5.37)

We notice that, when µ̃N and µ̃T are gamma CRMs and P0 is a uniform on [0, T ], the first
term simplifies as follows.

(1− z)
∫

R+×Y

s k(t; y)e−s (KN (y)+KT (y)) ρ(s)ds c P0(dy)

+ z

∫
R+×Y

s k(t; y)e−sKN (y) ρ(s)ds c P0(dy)

= c
1− z
T

∫
Y\(T,+∞)

k(t; y)

KN (y) +KT (y) + 1
dy + c

z

T

∫
Y\(T,+∞)

k(t; y)

KN (y) + 1
dy

Substituting the expression of the Ornstein-Uhlenbeck kernel, we get

c
1− z
T

min{t,T}∫
0

2ke−k(t−y)

KN (y) +KT (y) + 1
dy + c

z

T

min{t,T}∫
0

2ke−k(t−y)

KN (y) + 1
dy

Moreover, we have that

KN (y) =
n∑
i=1

ti,mi∫
0

k(t; y)dt =
n∑
i=1

ti,mi∫
0

2ke−k(t−y)
1{t≥y}dt

=

n∑
i=1

2k

ti,mi∫
min{max{0,y},ti,mi}

e−k(t−y)dt

=
n∑
i=1

2(1− e−k(ti,mi−y))1{0≤y≤ti,mi} +

n∑
i=1

2(eky − e−k(ti,mi−y))1{y≤0}
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Notice that the terms multiplied by 1{y≤0} are associated with an event with null probabil-
ity. Reorder the observations {t1,m1 , . . . , tn,mn} from the smallest to the highest and denote
the ordered collection as {t(1) < t(2) < · · · t(n)}, e.g. t(1) = min{t1,m1 , . . . , tn,mn}, and set
t(0) = 0

min{t,T}∫
0

2k e−k(t−y)

KN (y) + 1
dy =

n−1∑
i=0

min{t(i+1),t,T}∫
min{t(i),t,T}

2k e−k(t−y)

2[(n− i)−
∑n

j=i+1 e
−k(t(j)−y)] + 1

dy

=
n−1∑
i=0

 1
n∑

j=i+1
e−k(t(j)−t)

log


2(n− i)− 2

n∑
j=i+1

e−k(t(j)−min{t(i),t,T}) + 1

2(n− i)− 2
n∑

j=i+1
e−k(t(j)−min{t(i+1),t,T}) + 1




In the same spirit, reorder the observations {t1,m1 , . . . , tn,mn} and the values {C1, . . . , Cn}
from the smallest to the highest and denote the ordered collection as {a(1) < a(2) < · · · a(2n)},
e.g. a(1) = min{t1,m1 , . . . , tn,mn , C1, . . . , Cn}, and set a(0) = 0.

min{t,T}∫
0

2ke−k(t−y)

KN (y) +KT (y) + 1
dy =

=
2n−1∑
i=0

 1
2n∑

j=i+1
e−k(a(j)−t)

log


2(2n− i)− 2

2n∑
j=i+1

e−k(a(j)−min{a(i),t,T}) + 1

2(2n− i)− 2
2n∑

j=i+1
e−k(a(j)−min{a(i+1),t,T}) + 1




Using Theorem 5.2 to compute the remaining three terms in (5.37) we have that

fJh,T (u) = C−1unhe−u(KT (y∗h,T )+KN (y∗h,T )Vh,T )ρ(u)

where the normalizing constant, with gamma CRMs, equals

C =

+∞∫
0

unhe−u(KT (y∗h,T )+KN (y∗h,T )Vh,T )ρ(u)du

=

+∞∫
0

unh−1e−u(KT (y∗h,T )+KN (y∗h,T )Vh,T+1)du

=
(nh − 1)!

(KT (y∗h,T ) +KN (y∗h,T )Vh,T + 1)nh
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So that

kT∑
h=1

Vh,T kN (t;Y ∗h,T )

∫
R+

ufJh,T (u)du =

kT∑
h=1

nh Vh,T 2ke−k(t−Y ∗h,T )
1{t≥Y ∗h,T }

KT (Y ∗h,T ) +KN (Y ∗h,T )Vh,T + 1

kN∑
r=1

kN (t;Y ∗r,N )

∫
R+

ufJr,N (u)du =

kN∑
r=1

x′r 2ke−k(t−Y ∗r,N )
1{t≥Y ∗r,N}

KT (Y ∗r,N )Vr,N +KN (Y ∗r,N ) + 1

k0∑
m=1

kN (t;Y ∗m)

∫
R+

ufJk(u)du =

k0∑
m=1

(qm + x′′m) 2ke−k(t−Y ∗m)
1{t≥Y ∗m}

KT (Y ∗m) +KN (Y ∗m) + 1

Putting everything together we get that the posterior estimate λ̂N (t) for λN is

c (1− z)
T

2n−1∑
i=0

 1
2n∑

j=i+1
e−k(a(j)−t)

log


2(2n− i)− 2

2n∑
j=i+1

e−k(a(j)−min{a(i),t,T}) + 1

2(2n− i)− 2
2n∑

j=i+1
e−k(a(j)−min{a(i+1),t,T}) + 1




+
c z

T

n−1∑
i=0

 1
n∑

j=i+1
e−k(t(j)−t)

log


2(n− i)− 2

n∑
j=i+1

e−k(t(j)−min{t(i),t,T}) + 1

2(n− i)− 2
n∑

j=i+1
e−k(t(j)−min{t(i+1),t,T}) + 1




+

kT∑
h=1

nh Vh,T 2ke−k(t−Y ∗h,T )
1{t≥Y ∗h,T }

KT (Y ∗h,T ) +KN (Y ∗h,T )Vh,T + 1
+

kN∑
r=1

x′r 2ke−k(t−Y ∗r,N )
1{t≥Y ∗r,N}

KT (Y ∗r,N )Vr,N +KN (Y ∗r,N ) + 1

+

k0∑
m=1

(qm + x′′m) 2ke−k(t−Y ∗m)
1{t≥Y ∗m}

KT (Y ∗m) +KN (Y ∗m) + 1

Full conditional distributions

The full conditional distributions for the vector of latent variables (Yi,j,T , Vi,j,T ) are given
by

G0(dy) ∝ 1{ti,j≥y}
2ke−k(ti,j−y)

T

(
z

KT (y) + 1
+

1− z
KT (y) +KN (y) + 1

)
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w0 ∝
c z

T

min{ti,j ,T}∫
0

2ke−k(ti,j−y)

KT (y) + 1
dy +

c (1− z)
T

min{ti,j ,T}∫
0

2ke−k(ti,j−y)

KT (y) +KN (y) + 1
dy

=
c z

T

n−1∑
ι=0

 1
n∑

γ=ι+1
e−k(t

(γ)−ti,j)
log


2(n− ι)− 2

n∑
γ=ι+1

e−k(t
(γ)−min{t(ι),ti,j ,T}) + 1

2(n− ι)− 2
n∑

γ=ι+1
e−k(t

(γ)−min{t(ι+1),ti,j ,T}) + 1




+
c (1− z)

T

2n−1∑
ι=0

 1
2n∑

γ=ι+1
e−k(a

(γ)−ti,j)
log


2(2n− ι)− 2

2n∑
γ=ι+1

e−k(a
(γ)−min{a(ι),ti,j ,T}) + 1

2(2n− ι)− 2
2n∑

γ=ι+1
e−k(a

(γ)−min{a(ι+1),ti,j ,T}) + 1




wh,T ∝
n
−(i,j)
h 2ke−k(ti,j−Y ∗h,T )

1{ti,j≥Y ∗h,T }

KT (Y ∗h,T ) +KN (Y ∗h,T )Vh,T + 1

wr,N ∝ (1− z)
x′r 2ke−k(ti,j−Y ∗r,N )

1{ti,j≥Y ∗r,N}1{Vr,N=1}

KT (Y ∗r,N )Vr,N +KN (Y ∗r,N ) + 1

wm ∝
(q
−(i,j)
m + x′′m)2ke−k(ti,j−Y ∗m)

1{ti,j≥Y ∗m}

KT (Y ∗m) +KN (Y ∗m) + 1

P[Vh,T = v |Yi,j,T = yh,T ,T ,X,Y
−(i,j)
T ,YN ,V

−(i,j)
T ,VN ]

∝ z(1−v) (1− z)v 1

KT (yh,T ) +KN (yh,T ) v + 1

The full conditional distributions for the vector of latent variables (Yi,j,N , Vi,j,N ) are

H0(dy) ∝
[

z

T xi,j

(
Hi,j(y)

KN (y) + 1

)xi,j
+

1− z
T xi,j

(
Hi,j(y)

KN (y) +KT (y) + 1

)xi,j]
1{y<T}

p0 ∝
c z

T xi,j

T∫
0

(
Hi,j(y)

KN (y) + 1

)xi,j
dy +

c (1− z)
T xi,j

T∫
0

(
Hi,j(y)

KN (y) +KT (y) + 1

)xi,j
dy

Now notice thatHi,j(y) = 2
(
1{y<ti,j−1}(e

−k(ti,j−1−y)−e−k(ti,j−y))+1{ti,j−1<y<ti,j}(1−e−k(ti,j−y))
)
,
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therefore

T∫
0

(
Hi,j(y)

KN (y) + 1

)xi,j
dy =

=
n−1∑
ι=0

min{t(ι+1),T}∫
min{t(ι),T}

(
Hi,j(y)

2[(n− ι)−
∑n

γ=ι+1 e
−k(t(γ)−y)] + 1

)xi,j
dy

=
n−1∑
ι=0

min{t(ι+1),ti,j−1,T}∫
min{t(ι),ti,j−1,T}

(
2(e−k(ti,j−1−y) − e−k(ti,j−y))

2[(n− ι)−
∑n

γ=ι+1 e
−k(t(γ)−y)] + 1

)xi,j
dy

+
n−1∑
ι=0

max{min{t(ι+1),T,ti,j},ti,j−1}∫
min{max{min{t(ι),T},ti,j−1},ti,j}

(
2(1− e−k(ti,j−y))

2[(n− ι)−
∑n

γ=ι+1 e
−k(t(γ)−y)] + 1

)xi,j
dy

whose closed form can be found using the binomial expansion and the result∫ (
ecx

a− becx

)d
dx =

(ecx/a)d 2F1(d, d; d+ 1; be
xc

a )

cd
+ C

ph,T ∝ (1− z)1,
n

(xi,j)
h [Hi,j(Y

∗
h,T ]xi,j

xi,j ! [KT (Y ∗h,T ) +KN (Y ∗h,T )Vh,T + 1]xi,j
1{Vh,T=1}

where n(x) denotes the rising factorial, n(x) = (n+x−1)!
(n−1)!

pr,N ∝
[x′−(i,j)

r ]
(xi,j)

[Hi,j(Y
∗
r,N )]xi,j

xi,j ! [KT (Y ∗r,N )Vr,N +KN (Y ∗r,N ) + 1]xi,j

pm ∝
[qm + x′′−(i,j)

m ]
(xi,j)

[Hi,j(Y
∗
m)]xi,j

xi,j ! [KT (Y ∗m) +KN (Y ∗m) + 1]xi,j

Lastly, if Yi,j,N is different than any element in Y −(i,j)
N and YT , the full conditional of Vr,N

for r such that Yi,j,N = yr,N is not degenerate and is given by

P[Vr,N = v |Yi,j,N = yr,N ,T ,X,YT ,Y
−(i,j)
N ,VT ,V

−(i,j)
N ]

∝ z(1−v) (1− z)v 1

KT (yr,N )v +KN (yr,N )
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5.5 Simulation study

We provide here three simple simulation studies where we compare inference made through
three different approaches: the GM-dependent approach treated in the previous section,
the independent approach which preserves the same gamma marginals and OU-kernel for
µ̃T and µ̃N and a naive frequentist estimator provided by

λN (t) =
1∑n

1 1{t≤ti,mi}

n∑
i=1

mi∑
j=1

xi,j
ti,j − ti,j−1

1{ti,j−1<t≤ti,j}

In the first two simulation studies, we generate data for n = 10 and n = 20 subjects setting
both the observation process and the event process to two Poisson processes with constant
intensity equal to 1. Figure 5.1 e Figure 5.2 show the results. In the last simulation study, in
Figure 5.3, we generate data for n = 20 subjects and both intensities equal to exp{−0.2 t}.

Figure 5.1: Simulation study n.1. Left: GM-dependent model estimate for λN . Right: Inde-
pendent model estimate for λN .

Figure 5.2: Simulation study n.2. Left: GM-dependent model estimate for λN . Right: Inde-
pendent model estimate for λN .
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Figure 5.3: Simulation study n.3. Left: GM-dependent model estimate for λN . Right: Inde-
pendent model estimate for λN .

The GM-dependent model outperforms the independent approach both in terms of point
estimate as well as presenting a smaller uncertainty.

5.6 Concluding remarks

The proposed model allows to account for positive correlation between the two Poisson
processes’ intensities involved in the generation of panel count data and it performs promis-
ingly in the simulation studies conducted in the previous section. From the point of view
of the application, the positive correlation across the CRMs permits to catch for instance
the behaviour of those patients that feeling more or less pain will go to doctor’s appoint-
ments respectively more and less often. However, the results presented in this chapter
should be intended only as a first step to extend the use of dependent processes beyond
partial exchangeability and to different and more structured data. We plan to extend the
model presented here before applying it to real data. As already mentioned, two important
developments to consider are a generalizations to different kernels and marginals for the
two intensities and the inclusion of subject specific covariates and frialties, more details
on both are provided in Chapter 6. Moreover, in some applications, it is easy to imagine
the presence of an opposite effect, different from positive correlation, for instance when
very sick patients skip an increasing number of clinical visit due to inability to attend or
when the event process Ni(t) refers to the number of smoked cigarettes and the counts are
self-reported (Moreno et al., 2020). The specifications considered in this chapter ignore the
possible presence of negative correlation between the intensities. Therefore an interesting
extension will be a generalization of the model that allows for both effects. One way to do
so, it is to define two negatively correlated random measures, which does not appear an
easy task. In the next chapter we provide an idea to construct such measures which we
also plan to explore further in the future.
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Chapter 6

Further Extensions

In this last concluding chapter we describe extensions of the works presented in previous
chapters. In particular, Section 6.1 briefly describes possible generalization of the class of
mSSMs introduced in Chapter 2. Section 6.2 defines FuRBI priors, which are a natural gen-
eralization of n-FuRBIs of Chapter 3, obtained relaxing the assumption of independence of
increments for the CRV in the product space. Section 6.3 reformulates the model proposed
in Chapter 4 in terms of dependent linear regression models with discrete covariates and
shows how to modified the invariance conditions to deal with log link functions in a re-
gression setting. Finally, Sections 6.4 and 6.5 provide detailed tools to adapt the model pro-
posed in Chapter 5 in order to respectively consider subjects-level covariates/dependence
and incorporate negative-association.

6.1 Extensions of mSSM

The results provided in Chapter 2 may be extended in different ways. Let us recall the
generative definition of mSSM in Definition 2.7, which is X = (X

(ji)
i )i≥1 is distributed

according to a mSSM if to sample X(j1)
1 , . . . , X

(jn)
n , we can

1. sample a partially exchangeable random partition;

2. associate to each cluster identified at step 1 a value, sampling independent and iden-
tically distributed atoms from a non-atomic base measure, independently from the
partition sampled at step 1.

Starting from here, we may relax some of the conditions required by the sampling proce-
dure and obtain different laws for the sequence of observations, some examples are pro-
vided here below.
Extension 1. If we relax the requirement that the random partition at step 1 being partially
exchangeable, many of the results derived in Chapter 2 still holds. Choosing appropriately
the law of the partition, models for row-column exchangeable data may be represented
and constructed through this procedure.
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Extension 2: If instead we relax the hypothesis of independence of the atoms across each
other and/or independence of the partition, we may retrieve both n-FURBIs, invariant de-
pendent processes, repulsive mixtures (Petralia et al., 2012; Quinlan et al., 2017; Xie & Xu,
2020) and density regression models.

6.2 From n-FuRBI to FuRBI priors

Recall that if (p̃1, p̃2) are n-FuRBI on X, then there exist two random probability measures
p1 and p2 on X× X such that

p̃1(·) = p1(· × X) p̃2(·) = p2(X× ·)

and p1 and p2 share almost surely the entire sequence of atoms (cf. Definition 3.1). More-
over, notice that tractability of n-FuRBIs is a consequence of the tractability of the objects
constructed in the product spaces. Thus, the idea behind n-FURBIs can be generalized also
to those cases in which (p1, p2) are not normalizations of the coordinates of a CRV and, also
more generally, not NRMIs. In particular, we may define FuRBI priors as projections of any
mSSP: tractability will be guaranteed as long as the pEPPF is tractable.

6.3 Invariant dependent processes for log link functions

Recall the model introduced in Chapter 4 and consider just one response variable, if we
denote with Xi,j the i-th observation from the j-th population, the model can be written as
a linear regression model as

E[Xi,j | (θ1, θ2, θ3, θ4), Π̃
(N)
k , (ξc, σ

2
c )c≥1] =

4∑
k=1

θk1{j=k} + ξci,j

where Π̃
(N)
k is the partition in (4.14) induced by the s-HDP and ci,j is the label associated to

the cluster to which Xi,j belongs according to Π̃
(N)
k . Therefore, ξci,j can be seen as a latent

random effect and the error term

ei,j = Xi,j − E[Xi,j | (θ1, θ2, θ3, θ4), Π̃
(N)
k , (ξc, σ

2
c )c≥1]

has a covariate-dependent distribution, which induces heteroscedasticity.

Similar proposals for latent random effects can be found in Kleinman & Ibrahim (1998);
Guglielmi et al. (2014); Bush & MacEachern (1996); Berger & Tutz (2018).
The model can be extended beyond linearity using a function f : X → X to define the
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expected value as

E[Xi,j | (θ1, θ2, θ3, θ4), Π̃
(N)
k , (ξc)c≥1] = f

(
4∑

k=1

θk1{j=k} + ξci,j

)

where, as in Chapter 4, θk | p̃
iid∼ p̃, p̃ ∼ DP (α, P0) and ξci,j | q̃j

ind∼ q̃j . However, in order to
perform model selection, i.e. in order to estimate the partition of (θ1, . . . , θ4) without losing
identifiability, (q̃1, . . . , q̃4) needs to satisfy the following invariance condition

∫
f

(
4∑

k=1

θk1{j=k} + x

)
q̃j(dx)

a.s.
= f

(
4∑

k=1

θk1{j=k}

)
for j = 1, . . . , 4 (6.1)

Trivially, if f(x) = x and q̃j is almost surely symmetric around 0 for j = 1, 2, 3, 4, (6.1) is
satisfied and, in this case, one obtains the model studied in Chapter 4.
When the mean function is f(x) = exp {x}, the generalized linear model is said to have a
log link function and it is typically used with count data. If f(x) = exp {x} and q̃j is almost
surely invariant with respect to the identity and the transformation g(ξ) = log(2−exp {ξ}),
for j = 1, 2, 3, 4, (6.1) is satisfied and, in this case, one obtains a generalization of the model
studied in Chapter 4.

6.4 Dependent priors for panel count data with covariates and
frailties

The model presented in Chapter 5 can be generalized in order to model real data adding
frailties and considering the possible availability of covariates. Here, we denote with xi a
vector of covariates associated to subject i and we define the model as

{Ni(t) : t > 0} | λN,i(t)
ind∼ PP(λN,i(t) ) for i = 1, . . . , n

{Ti(t) : t > 0} | λT,i(t)
ind∼ PP(λT,i(t) ) for i = 1, . . . , n

λT,i(t) = λT,0(t) exp{x′iγ + ξi} with λT,0(t) =

+∞∫
0

σT κ e
−κ(t−y)

1(0,t](y) µ̃T (dy)

λN,i(t) = λN,0(t) exp{x′iβ + εi} with λN,0(t) =

+∞∫
0

σN κ e
−κ(t−y)

1(0,t](y) µ̃N (dy)

p(γ) ∝ 1 p(β) ∝ 1 p(σT ) ∝ 1 p(σN ) ∝ 1

(ξi, εi) | Σ
iid∼ N2

(
0,Σ

)
Σ ∼W−1

(
Id, ν

)
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(µ̃T , µ̃N ) | c, z d
= GM-dependent CRMs(c, z, ρ(s) = e−ss−1, P0)

c ∼ Gamma(αc, βc)

z ∼ Beta(αz, βz)

Setting θ = (µ̃N , µ̃T , β, γ, σT , σN , ξ1, . . . , ξn, ε1, . . . , εn, c, z), the likelihood function cor-
responding to the model is

L(θ ; t,x) = e
−

+∞∫
0

KT (y)µ̃T (dy)
e
−

+∞∫
0

KN (y)µ̃N (dy)
×

exp

{
n∑
i=1

[mi (x′iγ + ξi) +Ni,mi (x′iβ + εi)]

}
×

n∏
i=1

mi∏
j=1

[ ti,j∫
0

σT κ e
−κ(ti,j−y) µ̃T (dy)

1

xi,j !

( ∫
Y

Hi,j(y)µ̃N (dy)

)xi,j]

where

KT (y) = σT

n∑
i=1

[
exp{x′iγ + ξi} (1− e−κ(Ci−y))1(0,Ci](y)

]

KN (y) = σN

n∑
i=1

[
exp{x′iβ + εi} (1− e−κ(ti,mi−y))1(0,ti,mi ]

(y)
]

and

Hi,j(y) =


σN (e−κ(ti,j−1−y) − e−κ(ti,j−y)), if y < ti,j−1

σN (1− e−κ(ti,j−y)), if ti,j−1 < y < ti,j
0, otherwise

Setting θ∗ = (β, γ, σT , σN , ξ1, . . . , ξn, ε1, . . . , εn, c, z) and applying the same arguments
of Theorem 5.2 we get the posterior distribution provided in next theorem.

Theorem 6.1. The posterior distribution of µ̃T and µ̃N , conditional on T , X , YT , YN , VT , VN

and θ∗, equals the distribution of the vector of CRMs

(µ̃∗T , µ̃
∗
N ) +

(
kT∑
h=1

Jh,T δY ∗h,T ,

kT∑
h=1

Jh,T Vh,T δY ∗h,T

)

+

(
kN∑
r=1

Jh,N Vh,N δY ∗h,N ,

kN∑
r=1

Jh,N δY ∗h,N

)

+

(
k∑

m=k

Jm δY ∗m ,
k∑

m=1

Jm δY ∗m

)
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where µ̃∗T and µ̃∗N are CRMs such that

µ̃∗T
d
= µ∗0 + µ∗T

µ̃∗N
d
= µ∗0 + µ∗N

where µ∗0, µ∗T and µ∗N are independent CRMs with Lévy intensities respectively equal to

ν∗0(ds, dy) =c (1− z) e−s (KT (y)+KN (y)+1)P0(dy) s−1ds

ν∗T (ds, dy) =c z e−s (KT (y)+1)P0(dy) s−1ds

ν∗N (ds, dy) =c z e−s (KN (y)+1)P0(dy) s−1ds

The jumps J1,T , . . . , JkT ,T , J1,N , . . . , JkN ,N and J1, . . . , Jk are mutually independent and inde-
pendent from µ̃∗T and µ̃∗N and have densities

fJh,T (s) ∝ snh−1 e−s (KT (Y ∗h,T )+KN (Y ∗h,T )Vh,T+1)ds ≡ Gamma(nh,KT (Y ∗h,T ) +KN (Y ∗h,T )Vh,T + 1)

fJr,N (s) ∝ sx′r−1 e−s (KT (Y ∗r,N )Vr,N+KN (Y ∗h,T )+1)ds ≡ Gamma(x′r,KT (Y ∗r,N )Vr,N +KN (Y ∗h,T ) + 1)

fJk(s) ∝ sqm+x′′m−1 e−s (KT (Y ∗m)+KN (Y ∗m)+1)ds ≡ Gamma(qm + x′′m,KT (Y ∗m) +KN (Y ∗m) + 1)

where Gamma(a, b) denotes a Gamma distribution with expected value a/b.

From Theorem 6.1 we have that

λ̂N,0(t) = E

 +∞∫
0

σN κ e
−κ(t−y)

1(0,t](y) µ̃N (dy) | T ,X,YT ,YN ,VT ,VN , θ
∗

 =

= c (1− z)
∫
R+

t∫
0

s σN κ e
−κ(t−y) e−s (KT (y)+KN (y)+1)P0(dy) s−1ds+

+ c z

∫
R+

t∫
0

s σN κ e
−κ(t−y) e−s (KN (y)+1)P0(dy) s−1ds+

+

kT∑
h=1

Vh,T σN κ e
−κ(t−Y ∗h,T )

1(0,t](Y
∗
h,T )E [Jh,T ] +

+

kN∑
r=1

σN κ e
−κ(t−Y ∗r,N )

1(0,t](Y
∗
r,N )E [Jr,N ] +

+
k∑

m=1

σN κ e
−κ(t−Y ∗m)

1(0,t](Y
∗
m)E [Jm]
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where, the first term is

c (1− z)
∫
R+

t∫
0

s σN κ e
−κ(t−y) e−s (KT (y)+KN (y)+1)P0(dy) s−1ds =

=
c (1− z)σN κ

T

t∫
0

∫
R+

e−[κ(t−y)+s (KT (y)+KN (y)+1)]ds dy =

=
c (1− z)σN κ

T

t∫
0

e−κ(t−y)

KT (y) +KN (y) + 1
dy

Consider now: KT (y) +KN (y) + 1

KT (y) +KN (y) + 1 =σT

n∑
i=1

exp{x′iγ + ξi} (1− e−κ(Ci−y))1(0,Ci](y)

+σN

n∑
i=1

exp{x′iβ + εi} (1− e−κ(ti,mi−y))1(0,ti,mi ]
(y) + 1

Reorder the observations {t1,m1 , . . . , tn,mn} and the values {C1, . . . , Cn} from the highest to
the smallest and denote the ordered collection as {a(1) > a(2) > · · · > a(2n)}, e.g. a(1) =

max{t1,m1 , . . . , tn,mn , C1, . . . , Cn}.
Moreover, create the vector w defined according to wi = 1 if a(i) ∈ {C1, . . . , Cn} and wi = 0

otherwise and a duplicate and reorder the covariates and error terms in such a way that
they correspond to the new order induces by the a(i),we denote this new ordered terms
x(i), ξ(i) and ε(i). We have that

KT (y) +KN (y) + 1 = 1 when a(1) < y

KT (y) +KN (y) + 1 = σT w1 exp{x(1)γ + ξ(1)} (1− e−κ(a(1)−y))+

+ σN (1− w1) exp{x(1)β + ε(i)} (1− e−κ(a(1)−y)) + 1 when a(2) < y < a(1)

KT (y) +KN (y) + 1 = σT

2∑
i=1

wi exp{x(i)γ + ξ(i)}(1− e−κ(a(i)−y))+

+ σN

2∑
i=1

(1− wi) exp{x(i)β + ε(i)} (1− e−κ(a(i)−y)) + 1 when a(3) < y < a(2)

. . .
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KT (y) +KN (y) + 1 = σT

j∑
i=1

wi exp{x(i)γ + ξ(i)} (1− e−κ(a(i)−y))+

+ σN

j∑
i=1

(1− wi) exp{x(i)β + ε(i)} (1− e−κ(a(i)−y)) + 1 when a(j+1) < y < a(j)

. . .

KT (y) +KN (y) + 1 = σT

2n∑
i=1

wi exp{x(i)γ + ξ(i)} (1− e−κ(a(i)−y))+

+ σN

2n∑
i=1

(1− wi) exp{x(i)β + ε(i)} (1− e−κ(a(i)−y)) + 1 when 0 < y < a(2n)

Therefore, setting a(0) = +∞, a(2n+1) = 0 and
∑0

i=1 = 0

t∫
0

e−κ(t−y)

KT (y) +KN (y) + 1
dy =

2n∑
j=0

min{a(j),t}∫
min{a(j+1),t}

[
e−κ(t−y)

(
σT

j∑
i=1

wi exp{x(i)γ + ξ(i)}(1− e−κ(a(i)−y))+

σN

j∑
i=1

(1− wi) exp{x(i)β + ε(i)}(1− e−κ(a(i)−y)) + 1

)−1]
dy

=

2n∑
j=0

1

κ
∑j

i=1

(
Wi e−κ (a(i)−t)

) log(1 +
∑j

i=1Wi(1− e−κ (a(i)−min{a(j+1),t}))

1 +
∑j

i=1Wi(1− e−κ (a(i)−min{a(j),t}))

)

where Wi = σT wi exp{x(i)γ + ξ(i)}+ σN (1− wi) exp{x(i)β + ε(i)}.
Indeed, notice that

x2∫
x1

ea x

b− c ea x
dx =

[
− log(b− c ea x)

a c

]x2
x1

=
log
(
b−c ea x1
b−c ea x2

)
a c

where one still has to multiply by e−κ t and set

a = κ

b = σT

j∑
i=1

wi exp{x(i)γ + ξ(i)}+ σN

j∑
i=1

(1− wi) exp{x(i)β + ε(i)}+ 1 =

j∑
i=1

Wi + 1
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c =

j∑
i=1

[
(σTwi exp{x(i)γ + ξ(i)}+ σN (1− wi) exp{x(i)β + ε(i)}) e−κ a(i)

]
=

j∑
i=1

(
Wie

−κ a(i)
)

So that finally the first term is equal to

c (1− z)σN
T

2n∑
j=0

1∑j
i=1

(
Wi e−κ (a(i)−t)

) log(1 +
∑j

i=1Wi(1− e−κ (a(i)−min{a(j+1),t}))

1 +
∑j

i=1Wi(1− e−κ (a(i)−min{a(j),t}))

)

Analogously one can compute the second term as follows

c z

∫
R+

t∫
0

s σN κ e
−κ(t−y) e−s (KN (y)+1)P0(dy) s−1ds =

=
c z σN κ

T

t∫
0

e−κ(t−y)

KN (y) + 1
dy =

=
c z σN
T

2n∑
j=0

1∑j
i=1

(
Si e−κ (a(i)−t)

) log(1 +
∑j

i=1 Si(1− e−κ (a(i)−min{a(j+1),t}))

1 +
∑j

i=1 Si(1− e−κ (a(i)−min{a(j),t}))

)

where Si = σN (1− wi) exp{x(i)β + ε(i)}. While the remaining three terms are

kT∑
h=1

Vh,T σN κ e
−κ(t−Y ∗h,T )

1(0,t](Y
∗
h,T )E [Jh,T ] =

=

kT∑
h=1

Vh,T
nh σN κ

KT (Y ∗h,T ) +KN (Y ∗h,T )Vh,T + 1
e−κ(t−Y ∗h,T )

1(0,t](Y
∗
h,T )

kN∑
r=1

σN κ e
−κ(t−Y ∗r,N )

1(0,t](Y
∗
r,N )E [Jr,N ] =

=

kN∑
r=1

x′r σN κ

KT (Y ∗r,N )Vr,N +KN (Y ∗r,N ) + 1
e−κ(t−Y ∗r,N )

1(0,t](Y
∗
r,N )

k∑
m=1

σN κ e
−κ(t−Y ∗m)

1(0,t](Y
∗
m)E [Jm] =

=

k0∑
m=1

(qm + x′′m)σN κ

KT (Y ∗m) +KN (Y ∗m) + 1
e−κ(t−Y ∗m)

1(0,t](Y
∗
m)
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Finally, the conditional expected value of λN,0 is

λ̂N,0(t) =
c (1− z)σN

T

2n∑
j=0

1∑j
i=1

(
Wi e−κ (a(i)−t)

) log(1 +
∑j

i=1Wi(1− e−κ (a(i)−min{a(j+1),t}))

1 +
∑j

i=1Wi(1− e−κ (a(i)−min{a(j),t}))

)

+
c z σN
T

2n∑
j=0

1∑j
i=1

(
Si e−κ (a(i)−t)

) log(1 +
∑j

i=1 Si(1− e−κ (a(i)−min{a(j+1),t}))

1 +
∑j

i=1 Si(1− e−κ (a(i)−min{t(j),t}))

)

+

kT∑
h=1

Vh,T
nh σN κ

KT (Y ∗h,T ) +KN (Y ∗h,T )Vh,T + 1
e−κ(t−Y ∗h,T )

1(0,t](Y
∗
h,T )

+

kN∑
r=1

x′r σN κ

KT (Y ∗r,N )Vr,N +KN (Y ∗r,N ) + 1
e−κ(t−Y ∗r,N )

1(0,t](Y
∗
r,N )

+

k0∑
m=1

(qm + x′′m)σN κ

KT (Y ∗m) +KN (Y ∗m) + 1
e−κ(t−Y ∗m)

1(0,t](Y
∗
m)

where Wi = σT wi exp{x(i)γ + ξ(i)} + σN (1 − wi) exp{x(i)β + ε(i)} and Si = σN (1 −
wi) exp{x(i)β + ε(i)}.

6.5 Random measures with signed correlation

As anticipated at the end of Chapter 5, a nice tool to model dependence in panel count data
would be a pair of random measures that may display negative correlation. More precisely
the goal of this section is to define two random measures µ̃1 and µ̃2 on (X,X) that may
display negative correlation when evaluated over the same Borel set, i.e.

Cov[µ̃1(A), µ̃2(A)] < 0

The main idea we employ is to use partially exchangeable sequences as atoms of the ran-
dom measures, instead of i.i.d. sequences as it usually happens CRMs.

Let MX be the space of boundedly finite measures on (X,X) equipped with corresponding
Borel σ-algebra MX. Consider random elements µ̃ taking values in (MX,MX) such that µ̃
is almost surely discrete and has no fixed point of discountinuity: µ̃ =

∑
k≥1

Jkδθk .

Definition 6.1. Two random measures µ̃1 and µ̃2 on (X,X) are called random measures with
signed correlation if and only if

µ̃1
a.s.
=
∑
k≥1

Jkδ(θ1,k) µ̃2
a.s.
=
∑
k≥1

Wkδ(θ2,k)
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with
θj,k | θj,0

ind∼ H̃(· ; θj,0) for j = 1, 2

(θ1,0, θ2,0) ∼ H0(· , ·)

where H̃ is a random probability measure and H0 is a diffuse probability measures.

Notice that, by de Finetti theorem of partial exchangeability, Definition 6.1 implies that the
two sequences of atoms are partially exchangeable. For now we are also going to assume
that (Jk,Wk)k≥1 ⊥ (θ1,k, θ2,k)k≥1 and we say that the random measures are homogenous.
Notice that when H0 is degenerate on a single point where θ1,0 = θ2,0, i.e. H0 = δ{x,x},
many popular constructions of dependent completely random measures can be recovered,
as GM-dependent CRMs, hierarchical CRMs, compound random measures, etc. However,
exept when H0 is degenerate on some point, µ̃1 and µ̃2 are not CRMs, but mixtures of
CRMs as shown by their marginal Laplace functional

Proposition 6.1. Let µ̃1 and µ̃2 be random measures with signed correlation, then for every mea-
surable function f from X to R+, the marginal laplace functional transform of µ̃j is given by

E[e−µ̃j(f)] =

∫
Θ

exp

−θ
∫
X

∫
R+

(1− e−s f(x)) ρj(s)ds H̃(dx ; θj,0)

Hj(dθj,0)

where we use µ̃(f) to denote
∫
X
f(x)µ̃(dx) and Hj to denote the marginal probability distribution

induce by H0 on the j coordinate.

Proof. Proof is straightforward using tower rule conditioning on θj,0.

Theorem 6.2. Let µ̃1 and µ̃2 be homogeneous random measures with signed correlation, then

Cov(µ̃1(A), µ̃2(B)) = β Cov(µ̃1(X), µ̃2(X)) + γ CovH0(H̃(A; θ1,0), H̃(B; θ2,0))

where
β = EH0 [H̃(A; θ1,0), H̃(B; θ2,0)] and γ = E[µ̃1(X)]E[µ̃2(X)]

or equivalently

β = EH0 [H̃(A; θ1,0)]EH0 [H̃(B; θ2,0)] and γ = E[µ̃1(X) µ̃2(X)]

Proof.

Cov(µ̃1(A), µ̃2(B)) =E[E[µ̃1(A) µ̃2(B) | θ1,0, θ2,0] ]− E[E[µ̃1(A) | θ1,0] ]E[E[µ̃2(B) | θ2,0] ]
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where

E[E[µ̃1(A) µ̃2(B) | θ1,0, θ2,0] ] =E[E[
∑
k≥1

Jkδ(θ1,k)(A)
∑
k≥1

Wkδ(θ2,k)(B) | θ1,0, θ2,0] ]

=E[
∑
k≥1

JkH̃(A; θ1,0)
∑
k≥1

WkH̃(B; θ2,0)]

=E[
∑
k≥1

Jk
∑
k≥1

Wk]EH0 [H̃(A; θ1,0)H̃(B; θ2,0)]

and
E[E[µ̃1(A) | θ1,0] ] =E[E[

∑
k≥1

Jkδ(θ1,k)(A)] ]

=E[
∑
k≥1

JkH̃(A; θ1,0)]

=E[
∑
k≥1

Jk]EH0 [H̃(A; θ1,0)]

therefore

Cov(µ̃1(A), µ̃2(B)) =E[
∑
k≥1

Jk
∑
k≥1

Wk]EH0 [H̃(A; θ1,0)H̃(B; θ2,0)]

− E[
∑
k≥1

Jk]E[
∑
k≥1

Wk]EH0 [H̃(A; θ1,0)]EH0 [H̃(B; θ2,0)]

− E[
∑
k≥1

Jk]E[
∑
k≥1

Wk]EH0 [H̃(A; θ1,0)H̃(B; θ2,0)]

+ E[
∑
k≥1

Jk]E[
∑
k≥1

Wk]EH0 [H̃(A; θ1,0)H̃(B; θ2,0)]

=EH0 [H̃(A; θ1,0)H̃(B; θ2,0)]Cov(
∑
k≥1

Jk,
∑
k≥1

Wk)

+ E[
∑
k≥1

Jk]E[
∑
k≥1

Wk]CovH0(H̃(A; θ1,0), H̃(B; θ2,0))

Theorem 6.2 shows that the covariance between the two CRMs with signed correlation
can be decomposed into two terms, whose signs are given respectively by the covariance
between the total masses (i.e. by the weights) and the covariance induced on the atoms.

Corollary 6.1. Let µ̃1 and µ̃2 be random measures with signed correlation such that (Jk)k≥1 and
(Wk)k≥1 are independent, then

Cov(µ̃1(A), µ̃2(B)) = θ2 CovH0(H̃(A; θ1,0), H̃(B; θ2,0))

Proof. The proof is immediate applying Theorem 6.2.
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Theorem 6.3. Let µ̃1 and µ̃2 be homogeneous random measures with signed correlation such that
(Jk)k≥1 and (Wk)k≥1 are independent, then for every pair of measurable function f1 and f2 from
X to R+, the joint Laplace functional transform of µ̃1 and µ̃2 is given by

E[e−µ̃1(f1)−µ̃2(f2)] =

∫
Θ2

exp

{
− θ2

(∫
X

∫
R+

(1− e−s f1(x)) ρ1(s)ds H̃(dx ; θ1,0)

+

∫
X

∫
R+

(1− e−s f2(x)) ρ2(s)ds H̃(dx ; θ2,0)

)}
H0(dθ1,0, dθ2,0)

Proof. Proof is straightforward using tower rule conditioning on θ1,0 and θ2,0.
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Appendix A

Finite Dirichlet distribution

A.1 Some properties of the Dirichlet distribution

The Dirichlet distribution defined in Definition 1.2 admits also a famous representation in
terms of Gamma random variables, according to the following proposition.

Proposition (A.1). Consider k independent random variables Y1, . . . , Yk such that Yi
ind∼ Gamma(αi)

and define

pi =
Yi∑k
i=1 Yi

for i = 1, . . . , k

then (p1, . . . , pk) ∼ Dk−1(α1, . . . , αk).

where X ∼ Gamma(a, b) denotes a Gamma distributed random variable X parameterized
such that E[X] = a/b. Moreover the marginals of a Dirichlet distribution are Beta. Denote
with α0 the sum of the parameters, i.e. α0 :=

∑k
i=1 αi.

Proposition (A.2). Consider (p1, . . . , pk) ∼ Dk−1(α1, . . . , αk) then

pi ∼ Beta(αi, α0 − αi)

From proposition A.2 is immediate to obtain the first and second marginal moments of the
Dirichlet distribution given by

E[pi] =
αi
α0

for i = 1, ..., k

Var[pi] =
(α0 − αi)αi
α2

0(α0 + 1)
for i = 1, ..., k

Moreover, the covariance is

Cov[pi, pj ] = − αiαj
α2

0(α0 + 1)
for i 6= j
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Notice that the variance of each coordinate of (p1, . . . , pk) can be rearranged in the follow-
ing way

Var[pi] = E[pi] (1− E[pi])

(
1

α0 + 1

)
where it is evident that, for fixed expected values of the coordinates, the higher the sum
α0, the smaller the variance of the prior. More details about the Dirichlet distribution can
be found in many Bayesian statistics textbooks, as for instance, Bernardo & Smith (2009,
p. 134-136) and Ghosal & Van der Vaart (2017, p. 562-569).

A.2 Multinomial-Dirichlet Model

Given a population with k mutually exclusive and collectively exhaustive categories. One
can arbitrarily identify each category with a natural number, in such a way that when a
random sample X1, ..., Xn is drawn, each Xi takes value in {1, . . . , k} and Xi = j indicates
the i-th subject belongs to the j-th category. In this contest, assuming exchangeability, one

has that Xi | p
iid∼ f , where p = (p1, p2, . . . , pk) with pj ≥ 0 and

∑k
j=1 pj = 1 and where

f is a probability mass function with support on {1, 2, . . . , k} and such that f(j) = pj ,
for j = 1, . . . , k. The model can be equivalently rewritten in terms of the random counts
Nj =

∑n
i=1 1{j}(Xi), for j = 1, ..., k, which are distributed according to a multinomial

distribution, i.e.

P[N1 = n1, ..., Nk = nk | p] =


Γ(

∑k
j=1 nj+1)∏k

j=1 Γ(nj+1)

k∏
j=1

p
nj
j for (n1, . . . , nj) :

∑k
j=1 nj = n

0 otherwise

and we write N1, ..., Nk | p ∼ Multinomial(n, p). The conjugate prior distribution to the
multinomial distribution is the Dirichlet distribution

p ∼ ∆k−1(α1, . . . , αk)

The marginal likelihood of the model is called Dirichlet-Multinomial distribution and is
given by

P[N1 = n1, ..., Nk = nk] =


Γ(

∑k
j=1 nj+1)Γ(α0)

Γ(
∑k
j=1 nj+α0)

k∏
j=1

Γ(nj+αj)
Γ(nj+1)Γ(αj)

if
∑k

j=1 nj = n

0 otherwise

Following the Bayesian paradigm, one gets that the posterior distribution for p is given by

p | N1 = n1, ..., Nk = nk ∼ ∆k−1(α1 + n1, α2 + n2, ..., αk + nk)
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where nj , for j = 1, ..., k, is the value assumed by Nj in the observed sample, i.e. the
observed absolute frequency for the j-th group. So clearly the point estimate p under a
quadratic loss function is

E[ p | N1 = n1, ..., Nk = nk] =

(
α1 + n1

α0 + n
, ...,

αk + nk
α0 + n

)
which implies that the posterior point estimate is a weighted average of the prior expected
value and the frequentist estimate

E[ pj | N1 = n1, ..., Nk = nk] =
αj
α0

α0

α0 + n
+
nj
n

n

α0 + n

As usually, letting n going to infinity, the Bayesian point estimate converges to the fre-
quentist estimate of pj : p̂j =

nj
n . Moreover, the higher α0, the smaller the pace of converge,

which is a result coherent to the fact that α0 can be seen as reflecting our ”confidence” in
the prior guess.

A.3 Finite Mixture Model with Dirichlet prior

A finite mixture model is defined as follows

Xi | π, θ∗1, ..., θ∗k,
iid∼

k∑
j=1

πjκ(·; θ∗j )

where π = (π1, . . . , πk) is a random parameter taking value in the (k − 1)-dimensional
probability simplex and κ(·; ·) is a transition kernel. The most classical prior for such model
is provided by

(π1, . . . , πk) ∼ Dk−1(α1, . . . , αk)

θ∗j
iid∼ P0

An analogous way to describe the model requires the use of n latent variables c1, c2, ..., cn,
each taking value in {1, 2, . . . , k}, called cluster labels. They lead to the following represen-
tation.

Xi | c1, c2, ..., cn, θ
∗
1, ..., θ

∗
k
ind∼ κ(·; θ∗ci)

ci | π
iid∼ Discrete(π)

π ∼ Dk−1(α1, ..., αk)

θ∗j
iid∼ P0
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where Discrete(π) is used to denote a probability mass function f with support on {1, 2, . . . , k}
and such that f(j) = πj , for j = 1, . . . , k.
Finite mixture models are mainly used to perform clustering (i.e. unsupervised learning).
However, their main limitation resides in the fact that they require to define the number
of clusters k a priori even when it is unknown. This drawback can be overcome mainly
in three alternative ways. One is to develop a modeling selection procedure to choose the
appropriate value for k. See, for instance, Ishwaran et al. (2001). Another strategy is setting
a prior over the parameter k. When this is done, the resulting model is called mixture
of finite mixture. See, for instance, Richardson & Green (1997), Miller & Harrison (2018),
Argiento & De Iorio (2019) and Frühwirth-Schnatter et al. (2020). Finally, one can assume
an infinite number of latent components, as happens in Dirichlet process mixture models,
which are reviewed in Chapter 1 of this thesis.
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Moments of Functional of CRMs

Proposition 6.2. Consider the object

µ(f) =

∫
Y

f(y)µ̃(dy)

where f : Y→ R+ and µ̃ is a completely random measure on (Y,Y) without fixed jumps and with
Lévy intensity given by v(ds, dy) = ρ(s)ds c P0(dy) with P0 a non-atomic probability measure on
(Y,Y). Then

E[µ(f)] =

∫
Y

f(y) s v(ds, dy)

Proof.

E[λ(t)] = − ∂

∂u

(
E
[
e
−u

∫
Y
f(y)µ̃(dy)])∣∣∣∣∣

u=0

=

= − ∂

∂u

(
exp

{ ∫
R+×Y

(1− e−u s f(y)) v(ds, dy)

})∣∣∣∣∣
u=0

=

=

∫
R+×Y

f(y) s v(ds, dy)

Proposition 6.3. Consider the two following objects

µ(f1) =

∫
Y

f1(y)µ̃(dy) µ(f2) =

∫
Y

f2(y)µ̃(dy)

where fl : Y → R+, for l = 1, 2, and µ̃ is a completely random measure on (Y,Y) without
fixed jumps and with Lévy intensity given by v(ds, dy) = ρ(s)ds c P0(dy) with P0 a non-atomic
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probability measure on (Y,Y). Then

E[µ(f1)µ(f2)] =

∫
R+×Y

f1(y) f2(y) s2 v(ds, dy) +

+

∫
R+×Y

f1(y) s v(ds, dy)

∫
R+×Y

f2(y) s v(ds, dy)

Proof.

E[λ1(t1)λ2(t2)] =
∂′′

∂u1∂u2

(
E
[
e
−

∫
Y

(u1 f1(y)+u2 f2(y))µ̃(dy)])∣∣∣∣∣u1=0
u2=0

=

=
∂′′

∂u1∂u2

(
exp

{ ∫
R+×Y

(1− e−u1 s f1(y)−u2 s f2(y)) v(ds, dy)

})∣∣∣∣∣u1=0
u2=0

=

=

∫
R+×Y

f1(y) f2(y) s2 v(ds, dy) +

( ∫
R+×Y

f1(y) s v(ds, dy)×

×
∫

R+×Y

f2(y) s v(ds, dy)

)
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Faà di Bruno’s Formula

Faà di Bruno’s Formula

The formula of Faa di Bruno (Faà di Bruno, 1857) provides an explicit expression for the
n-th derivative of a composition of functions as follows. Let g(x) be defined on a neighbor-
hood of x0 and have derivatives up to order n at x0; let f(y) be defined on a neighborhood
of y0 = g(x0) and have derivatives up to order n at y0. Then the n-th derivative of the
composition h(x) = f [g(x)] at x0 is given by the formula

∂n

∂xn
h(x)

∣∣∣∣∣
x=x0

=
n∑
k=1

fk
∑
p(n,k)

n!
n∏
i=1

gλii
λi!i!λi

where

fk =
∂k

∂yk
f(y)

∣∣∣∣∣
y=g(x0)

gi =
∂i

∂xi
g(x)

∣∣∣∣∣
x=x0

p(n, k) = {(λ1, . . . , λn) : λi ∈ N0,

n∑
i=1

λi = k,

n∑
i=1

iλi = n}

p(n, k) encodes the set of partitions of n identical elements into k groups such that λi is the
number of groups with i elements.

From Equation (5.9) to Equation (5.12)

ψz(f1, f2) = z

∫
R+×Y

(1− e−s f1(y)) + (1− e−s f2(y))ρ(s)dsP0(dy)+

+ (1− z)
∫

R+×Y

(1− e−s (f1(y)+f2(y)))ρ(s)dsP0(dy)
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ψz(γ1y∗ ,KN (y)1y∗) =P0(dy∗)

{
z

∫
R+

[
(1− e−s γ) + (1− e−sKN (y∗))

]
ρ(s)ds+

+ (1− z)
∫
R+

(1− e−s (γ+KN (y∗)))ρ(s)ds

}

∂

∂γ
ψz(γ1y∗ ,KN (y)1y∗) = P0(dy∗)

{
z

∫
R+

s e−s γρ(s)ds+

+ (1− z)
∫
R+

s e−s (γ+KN (y∗))ρ(s)ds

}

∂i

∂γi
ψz(γ1y∗ ,KN (y)1y∗) = P0(dy∗)

{
z

∫
R+

(−1)i−1si e−s γρ(s)ds+

+ (1− z)
∫
R+

(−1)i−1si e−s (γ+KN (y∗))ρ(s)ds

}

By Faà di Bruno’s formula, setting f(y) = ey and g(x) = −c ψz(x1y∗h,T ,KT (y)1y∗h,T ), we
have

(−1)nh,T
∂nh,T

∂γnh,T
e
−cψz(γ1dy∗

h,T
,KN (y)1dy∗

h,T
)

∣∣∣∣∣
γ=KT (y∗h,T )

=

= (−1)nh,T
nh,T∑
k=1

e−cψz(KT (y∗h,T ),KN (y∗h,T ))ck P0(dy∗h,T )k×

×
∑

p(nh,T ,k)

nh,T !

nh,T∏
i=1

(−1)λi

λi!i!λi

{
z

∫
R+

(−1)i−1si e−sKT (y∗h,T )ρ(s)ds+

+ (1− z)
∫
R+

(−1)i−1si e−s (KT (y∗h,T )+KN (y∗h,T ))ρ(s)ds

}λi
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and, thus,

(−1)nh,T
∂nh,T

∂γnh,T
e
−cψz(γ1dy∗

h,T
,KN (y)1dy∗

h,T
)

∣∣∣∣∣
γ=KT (y∗h,T )

=

= e−cψz(KT (y∗h,T ),KN (y∗h,T ))×

× c P0(dy∗h,T )

{
z

∫
R+

snh,T e−sKT (y∗h,T )ρ(s)ds+

+ (1− z)
∫
R+

snh,T e−s (KT (y∗h,T )+KN (y∗h,T ))ρ(s)ds

}
+ o(P0(dy∗h,T ))

From Equation (5.16) to Equation (5.17)

ψ(l)(γ) =

∫
R+

[1− e−sγ ]ρl(s)ds

∂i

∂γi
ψ(l)(γ) =

∫
R+

(−1)i−1si e−s γρl(s)ds

By Faà di Bruno’s formula, setting f(y) = ey and g(x) = −ψ(T )(γ)µ̃0(dy∗h), we have

(−1)nh
∂nh,T

∂γnh,T
e−ψ

(T )(γ)µ̃0(dy∗h)

∣∣∣∣∣
γ=KT (y∗h)

=���
�(−1)nh
nh,T∑
r=1

e−ψ
(T )(KT (y∗h))µ̃0(dy∗h)×

×
∑

p(nh,T ,r)

nh,T !

nh,T∏
i=1

���
�(−1)λi

λi!i!λi

{
µ̃0(dy∗h)

∫
R+

���
�

(−1)i−1si e−sKT (y∗h)ρT (s)ds

}λi
=

= e−ψ
(T )(KT (y∗h))µ̃0(dy∗h)

nh,T∑
r=1

µ̃0(dy∗h)r×

×
∑

p(nh,T ,r)

nh,T !

nh,T∏
i=1

1

λi!i!λi

{ ∫
R+

si e−sKT (y∗h)ρT (s)ds

}λi

Defining ξnh,T ,T,r(KT (y∗h)) =
∑

p(nh,T ,r)

nh,T !
nh,T∏
i=1

1
λi!i!λi

{ ∫
R+

si e−sKT (y∗h)ρT (s)ds

}λi
, we get
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(−1)nh
∂nh

∂γnh
e−ψ

(T )(γ)µ̃0(dy∗h)

∣∣∣∣∣
γ=KT (y∗h)

=

=

nh,T∑
r=1

ξnh,T ,T,r(KT (y∗h)) e−ψ
(T )(KT (y∗h))µ̃0(dy∗h)µ̃0(dy∗h)r

Notice that ξnh,T ,T,r(KT (y∗h)) =
∑
(∗)

(
nh,T

q1,··· ,qr
)

1
r!τ

(T )
q1 (KT (y∗h)) · · · τ (T )

qr (KT (y∗h)), where the sum

runs over all vectors (q1, . . . , qr) of positive integers such that
∑r

j=1 qj = nh,T .

Analogously, we have that

(−1)nh,N
∂nh,N

∂γnh,N
e−ψ

(N)(γ)µ̃0(dy∗h)

∣∣∣∣∣
γ=KN (y∗h)

=

=

nh,N∑
r=1

ξnh,N ,N,r(KN (y∗h)) e−ψ
(N)(KN (y∗h))µ̃0(dy∗h)µ̃0(dy∗h)r

where ξnh,N ,N,r(KN (y∗h)) =
∑

p(nh,N ,r)

nh,N !
nh,N∏
i=1

1
λi!i!λi

{ ∫
R+

si e−sKN (y∗h)ρN (s)ds

}λi
or, equiv-

alently, ξnh,N ,N,r(KN (y∗h)) =
∑
(∗)

(
nh,N
q1,··· ,qr

)
1
r!τ

(N)
q1 (KN (y∗h)) · · · τ (N)

qr (KN (y∗h)), where the sum

runs over all vectors (q1, . . . , qr) of positive integers such that
∑r

j=1 qj = nh,N .

From Equation (5.18) to Equation (5.19)

e−ψ
(T )(KT (y∗h))−ψ(N)(KN (y∗h))µ̃0(dy∗h)µ̃0(dy∗h)rT,h+rN,h =

= (−1)rT,h+rN,h
∂rT,h+rN,h

∂γrT,h+rN,h
e−γµ̃0(dy∗h)

∣∣∣∣∣
γ=ψ(T )(KT (y∗h))+ψ(N)(KN (y∗h))

E

[
e−ψ

(T )(KT (y∗h))−ψ(N)(KN (y∗h))µ̃0(dy∗h)µ̃0(dy∗h)rT,h+rN,h

]
=

= (−1)rT,h+rN,h
∂rT,h+rN,h

∂γrT,h+rN,h
e−c0ψ

(0)(γ)P0(dy∗h)

∣∣∣∣∣
γ=ψ(T )(KT (y∗h))+ψ(N)(KN (y∗h))

By Faà di Bruno’s formula, setting f(y) = ey and g(x) = −c0ψ
(0)(γ)P0(dy∗h), we have
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(−1)rT,h+rN,h
∂rT,h+rN,h

∂γrT,h+rN,h
ec0−ψ

(0)(γ)P0(dy∗h)

∣∣∣∣∣
γ=ψ(T )(KT (y∗h))+ψ(N)(KN (y∗h))

=

=((((
((((−1)rT,h+rN,he−c0ψ

(0)(ψ(T )(KT (y∗h))+ψ(N)(KN (y∗h)))P0(dy∗h)×

×
rT,h+rN,h∑
r′=1

cr
′

0 P0(dy∗h)r
′ ∑
p(rT,h+rN,h,r′)

(rT,h + rN,h)!

rT,h+rN,h∏
i=1

��
��(−1)λi

λi!i!λi

{ ∫
R+

��
�(−1)i−1si e−sψ

(T )(KT (y∗h))+ψ(N)(KN (y∗h))ρ0(s)ds

}λi

(−1)rT,h+rN,h
∂rT,h+rN,h

∂γrT,h+rN,h
ec0−ψ

(0)(γ)P0(dy∗h)

∣∣∣∣∣
γ=ψ(T )(KT (y∗h))+ψ(N)(KN (y∗h))

=

= e−ψ
(0)(ψ(T )(KT (y∗h))+ψ(N)(KN (y∗h)))P0(dy∗h)×

×c0P0(dy∗h)

∫
R+

srT,h+rN,h e−sψ
(T )(KT (y∗h))+ψ(N)(KN (y∗h))ρ0(s)ds+ o(P0(dy∗h))
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normalized random measure mixture models. Statistical Science 28, 313–334.

195



BELLAMY, L., CASAS, J.-P., HINGORANI, A. D. & WILLIAMS, D. J. (2007). Pre-eclampsia
and risk of cardiovascular disease and cancer in later life: systematic review and meta-
analysis. BMJ 335, 974.

BERAHA, M., GUGLIELMI, A. & QUINTANA, F. A. (2021). The semi-hierarchical dirichlet
process and its application to clustering homogeneous distributions. Bayesian Analysis 1,
1–33.

BERGER, M. & TUTZ, G. (2018). Tree-structured clustering in fixed effects models. Journal
of Computational and Graphical Statistics 27, 380–392.

BERNARDO, J. M. & SMITH, A. F. (2009). Bayesian theory, vol. 405. John Wiley & Sons.

BHARDWAJ, G. & DUNSBY, A. (2013). The business cycle and the correlation between
stocks and commodities. Journal of Investment Consulting 14, 14–25.

BLACKWELL, D. & MACQUEEN, J. B. (1973). Ferguson distributions via Pólya urn schemes.
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