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Contributed Discussion

Giovanni Rebaudo*, Augusto Fasano�, Beatrice Franzolini� and Peter Müller*

We congratulate the authors for a very interesting paper, which provides a concrete
contribution to the Bayesian nonparametric literature. Their work provides an efficient
method to evaluate the sensitivity of posterior quantities of interest – computed through
variational Bayes approximations – to the prior distribution of the mixing weights in
Bayesian discrete mixture models. The authors argue for sensitivity checks to uncover
possible non-robustness of the results to prior settings. Importantly, they develop an
easy-to-use and efficient method to do it in Bayesian nonparametric (BNP) mixtures. In
the following, we illustrate our comments on the most widely used construction discussed
by the authors: the Dirichlet process mixture (DPM) model (Lo, 1984), namely

Xi | θi
ind∼ P(·|θi), θi | P̃

iid∼ P̃ , P̃ ∼ DP(α,Pbase). (1)

Following the authors, in such a setting one of the goals is to perform inference about
the random number of clusters, Gcl, that is the number of occupied mixture components
P in a sample of size N , with a particular focus on its expected value. In this regard,
it is worth noticing that robustness is relevant just in terms of the specific quantity of
interest or decision of the analysis.

First, we agree with the authors that sensitivity analysis to prior assumptions should
be done routinely if the prior specification is driven by mathematical convenience or
heuristics, as often is in BNP models. This would highlight the influence of the specific
assumptions on the results of the analysis, pointing to which of them should be justified
more strongly. After assessing sensitivity, the next fundamental question is: how can we
justify probabilistic assumptions in the challenging infinite/high-dimensional Bayesian
settings? In principle, one possibility could be provided by the subjective Bayesian
paradigm. According to it, the prior should reflect a priori opinions on quantities of
interest. Those are more easily elicited when expressed directly in terms of observable
values (see e.g., Fortini and Petrone, 2016). However, this approach can be particularly
challenging in the BNP world due to the infinite/high-dimensionality of the parameter
space. One way to tackle this issue and elicit prior assumptions consists in working with
prior predictive distributions or with the a priori expected value of the number of clusters
(see e.g., De Blasi et al., 2015). However, posterior inference strongly depends also on
other a priori assumptions, such as the choice of the mixture kernel and the base measure
in DPM. Another way to justify the choice of the prior is in terms of the properties of
the summaries of interest (e.g., consistency of Gcl) assuming an ideal frequentist truth
(Nobile, 1994; Miller and Harrison, 2018; Ascolani et al., 2022). Furthermore, different
prior settings can be also specified in a given dataset by tuning the hyperparameters
in terms of predictive accuracy, e.g. via cross-validation. All of the above methods – as
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well as other possible alternatives, including popular empirical-based approaches (Liu,
1996; McAuliffe et al., 2006) – require to specify some subjective assumptions (e.g.,
homogeneity assumptions, prior distribution, data generating process, loss function).
The implications of such assumptions are challenging to assess, pointing toward the
need for further research, especially in the BNP mixture framework.

Second, considering the sensitivity of the stick-breaking prior to values of α in (1),
it would be interesting to assess how the specification of a prior for the concentration
parameter could increase robustness. The use of a prior on α leads to a mixing measure
that is itself a mixture in the sense of Antoniak (1974). Ideally, this would allow learning
from the data which values of α are most appropriate for the data at hand. Consequently,
it would be very interesting to investigate how the results and the sensitivity checks
proposed by the authors could be embedded in such a framework.

Another, useful extension of the idea and techniques developed by the authors is
to provide a toolkit that assesses sensitivity to the choice of the kernel or of the base
measure of the DP. A common choice of kernel P and base measure Pbase in (1) are the
Gaussian kernel and the conjugate normal-inverse-Wishart base measure, respectively.
Such assumptions are typically motivated by mathematical convenience and the choice
of the hyperparameters of the base measure is mainly carried out following heuristics.
However, posterior inference on the number of clusters strongly depends on such as-
sumptions as shown empirically and theoretically (see e.g., Petralia et al., 2012; Cai
et al., 2021; Chandra et al., 2020).

Finally, as anticipated by the authors, it would be very interesting to exploit the
general results developed in the work to obtain an easy-to-use tool to check the sensitiv-
ity also for mixture models under different prior distributions for the mixing measure in
the popular class of Gibbs-type prior (Gnedin and Pitman, 2006; De Blasi et al., 2015)
as well as for different divergence measures.

To conclude we believe the work by Giordano, Liu, Jordan, and Broderick can stimu-
late further computational research in the Bayesian community and be applied in many
practical situations. We commend them one more time for a remarkable paper.
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