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S1 Preliminaries on exchangeable partitions and partial ex-
changeability

This section contains some preliminaries from existing literature on exchangeable partition
models and partial exchangeability, which are relevant to the framework developed in the
main paper.

Exchangeable partition models are a fundamental framework in Bayesian nonparamet-
rics, particularly in clustering and mixture modeling, where the primary goal is often to
infer underlying latent structures from observed data (see, for instance, Ghosal and Van der
Vaart, 2017, Chapter 14.1). Such models are developed under the assumption of exchange-
ability of the sequence of random variables (X1, . . . , Xn), where Xi represents the ith ob-
servation in a sample of size n. The exchangeability assumption ensures that the joint
distribution of the sequence remains invariant under any permutation of the indices. That
is, for any permutation σ of the first n natural numbers, we have

(X1, . . . , Xn)
d
= (Xσ(1), . . . , Xσ(n)),

where
d
= denotes equality in distribution. The standard extension of this assumption arises

when the observed sample is considered as a finite subset of an infinite population, denoted
by X = (X1, X2, . . .). In this case, the assumption of exchangeability is naturally extended
to the entire infinite sequence, requiring that any finite subset, regardless of its size, remains
exchangeable.

The assumption of exchangeability for an infinite sequence of observations leads to the
renowned de Finetti’s representation theorem (De Finetti, 1937), which states that the law
of any infinite and exchangeable sequence can be expressed as a mixture of independent
and identically distributed (i.i.d.) random variables. Specifically, for any n and measurable
A1, . . . , An,

P[X1 ∈ A1, . . . , Xn ∈ An] =

∫ n∏
i=1

p̃(Ai)Q(dp̃),

where p̃ is a random probability measure, and Q serves as a prior distribution on p̃.
Under these assumptions, exchangeable partitions play a fundamental role in nonpara-

metric modeling strategies to determine the specification of Q, i.e., the distribution of p̃. In
fact, many popular nonparametric priors Q (e.g., Ferguson, 1973; Pitman and Yor, 1997)
almost surely select discrete random probability measures, i.e.,

p̃
a.s.
=
∑
h≥1

whδθh ,
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where δx denotes a Dirac measure at x, and the weights satisfy
∑

h≥1wh = 1. Extensions to
continuous distributions can be achieved through mixture models, where the almost surely
discrete random probability measure serves as a mixing measure for a continuous density
kernel k (Ferguson, 1983; Lo, 1984), leading to

Xi | p̃
iid∼
∫

k(x, θ)p̃(dθ) (1)

or equivalently

Xi | ξi
ind∼ k(x, ξi), ξi

iid∼ p̃.

The discreteness of p̃, whether used directly to model the data distribution or as a mix-
ing measure, induces ties among observations (X1, . . . , Xn) or among latent parameters
(ξ1, . . . , ξn), respectively, thereby defining a random partition of [n] = {1, . . . , n}. The ran-
dom partition arises imposing that ξi = ξj if and only if i and j belong to the same set
in the partition. For instance, the Dirichlet process mixture (DPM) model, obtained by
imposing a Dirichlet process prior on p̃ in (1), can be equivalently represented in terms of
the induced partition structure. Let ρ denote the random partition and c = (c1, . . . , cn)
be a vector of subject-specific allocation variables encoding ρ, i.e. ci ∈ [n] and ci = cj if
and only if i and j belong to the same set in the partition. The DPM model can then be
expressed as

Xi | θci
ind∼ k(x, θci), θh

iid∼ P0, ρ ∼ Lα,

where P0 and α denote the base measure and concentration parameter of the Dirichlet
process, respectively, and Lα represents the law of the partition induced by the Dirichlet
process, referred to as exchangeable partition probability function (EPPF), which equals

Lα(ρ) =
αK
∏K

h=1(nh − 1)!∏n
j=1(α+ j − 1)

,

where K is the number of sets in ρ, and nh denotes the number of elements assigned to the
hth set in ρ (according to some arbitrary labeling of the sets in ρ). Note that, since the
EPPF depends only on the cardinalities of the sets in ρ and it is symmetric as a function
of the cardinalities (n1, . . . , nK), the latent random partition ρ inherits the exchangeability
assumption imposed on the law of the observable (X1, . . . , Xn). Permuting the partitioned
elements does not change the probability of a given partition, formally

Lα( {A1, . . . , AK} ) = Lα(σ({A1, . . . , AK})),

e.g., n = 3, K = 2, and σ = (1, 3)

Lα( { {1}, {2, 3} } ) = Lα( { {1, 2}, {3} } ).

This approach can be generalized to various partition laws, all satisfying exchangeability
assumptions (Pitman, 1996), providing a flexible framework for clustering and mixture
modeling.

However, while standard exchangeable partition models offer mathematical tractability,
they impose strong assumptions that may not always align with real-world data, particu-
larly when dependencies or structural constraints exist among observations. This limitation
has motivated the development of dependent nonparametric priors, allowing for controlled
deviations from full exchangeability. In contrast to full exchangeability, partial exchange-
ability provides a more flexible alternative by relaxing the assumption that all observations
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are interchangeable. In many practical applications, data points are grouped into subsets
where exchangeability holds within each subset but not necessarily across them. A number
d of sequences of random variables X1 = (X1,1, X1,2, . . .), . . . , Xd = (Xd,1, Xd,2, . . .) are said
to be partially exchangeable if their joint distribution is invariant under permutations that
only rearrange elements within each sequence. More formally, for any finite samples sizes
n1, . . . , nd and any permutations σ1, . . . , σd, we have

((X1,i)
n1
i=1, . . . , (Xd,i)

nd
i=1)

d
=
(
(X1,σ1(i))

n1
i=1, . . . , (Xd,σd(i))

nd
i=1

)
.

This framework naturally arises in hierarchical or spatial settings, where dependencies exist
but are not global. This leads to models such as the hierarchical Dirichlet process (Teh
et al., 2006), nested Dirichlet process (Rodŕıguez et al., 2008), and dependent Dirichlet
process (MacEachern, 2000), which introduce structured dependencies while preserving
local exchangeability within groups. Importantly, partial exchangeability does not imply
that the d sequences follow marginally the same distribution.

Nonetheless, in this work, we show that neither exchangeability nor partial exchange-
ability are appropriate for estimating multiple latent partitions of the same objects, as they
fail to adequately capture heterogeneity or homogeneity in the data structure.

S2 Finite exchangeability of telescopic clustering

Theorem 2 in the main paper trivially implies that the collection (X1i, X2i)i≥1 is exchange-
able in i and, consequently, that any finite subsequence of size n extracted from it is also
exchangeable. In this section, we provide an alternative proof of exchangeability for any
finite sequence of length n that does not rely on the representation of the infinite collection
(X1i, X2i)i≥1 given in Theorem 2.

Assume that (X1i, X2i)
n
i=1 is a finite sample distributed according to a telescopic clus-

tering model. By marginal exchangeability of (X1i)
n
i=1, we have that, for any measurable

A ⊂ X1 and any σ ∈ P(n), with P(n) set of permutations of n elements,

P [(X1i)
n
i=1 ∈ A] = P

[
(X

(1)
σ(i))

n
i=1 ∈ A

]
(2)

Moreover, since the marginal model at layer 1 admits the equivalent representation

(X1i, θi) | p̃1
ind∼ k1(X1i, θi)× p̃1(dθi) for i = 1, . . . , n

p̃1 ∼ P1

we have that (X1i, θi)
n
i=1 is exchangeable, i.e.,

P [(X1i, θi)
n
i=1 ∈ A×B] = P

[
(X

(1)
σ(i), θσ(i))

n
i=1 ∈ A×B

]
(3)

for any measurable B ⊂ Θ, and, therefore, by (2) and (3)

P [(θi)
n
i=1 ∈ B | (X1i)

n
i=1 ∈ A] = P

[
(θσ(i))

n
i=1 ∈ B | (X(1)

σ(i))
n
i=1 ∈ A

]
Moreover, we note that the partition ρ1 is a deterministic function of the latent parameters
(θ1, . . . , θn) thus its posterior law has to preserve the same invariance of the posterior of
the latent parameters, i.e., for any σ ∈ P(n),

P [ρ1 = ρ1 | (X1i)
n
i=1 ∈ A] = P

[
ρ1 = σ(ρ1) | (X(1)

σ(i))
n
i=1 ∈ A

]
(4)
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where σ(ρ1) is the partition obtained applying the permutation σ to the elements in the
clusters identified by ρ1.

Consider now the second layer and a measurable rectangle C =
⊗n

i=1Ci, note that

P [(X2i)
n
i=1 ∈ C | (X1i)

n
i=1 ∈ A)]

equals ∑
ρ1∈Π(n)

{P [(X2i)
n
i=1 ∈ C | ρ1 = ρ1]P [ρ1 = ρ1 | (X1i)

n
i=1 ∈ A]} (5)

where Π(n) is the set of partitions of n elements and P[(X2i)
n
i=1 ∈ C | ρ1 = ρ1] is∫

PM
X2

∏
m∈m

∏
i:c1i=m

∫
Θ2

∫
Ci

k2(x, θ)dx p̃2m(dθ)P2(dp̃21 . . . dp2M )

=

∫
PM
X2

∏
m∈m

∏
i:cσ(i)=m

∫
Θ2

∫
Cσ(i)

k2(x, θ)dx p̃2m(dθ)P2(dp̃21 . . . dp2M )

=P((X2σ(i))
n
i=1 ∈ C | ρ1 = σ(ρ1))

(6)

where PX2 is the space of all probability measures on X2 and the mixing or de Finetti
measure P2 is a probability measure on PM

X2
.

The extension of the result in (6) to any measurable set C can be obtained thanks
to Dynkin’s π-λ theorem, recalling that rectangles are a generating π-system of the Borel
product σ-algebra and that the set of measurable C for which (6) holds true is easily proved
to be a λ-system.

Putting together (5) with (4) and (6), for any measurable A and C, we get

P [(X2i)
n
i=1 ∈ C | (X1i)

n
i=1 ∈ A] = P

[
(X2σ(i))

n
i=1 ∈ C | (X(1)

σ(i))
n
i=1 ∈ A

]
Finally, consider the joint prior predictive distribution of the whole finite matrix (X1i, X2i)

n
i=1

obtained as
P [(X1i)

n
i=1 ∈ A]P [(X2i)

n
i=1 ∈ C | (X1i)

n
i=1 ∈ A]

and plug-in the previous results to obtain invariance with respect to any permutation σ.

S3 Sampling schemes for generic telescopic clustering mod-
els

For simplicity of exposition, the algorithms for the general class of telescopic clustering mod-
els are in this section presented referring to the Markovian graphical structure in Figure 2
in Section 3.3, whose special cases include telescopic clustering with two layers. Algorithms
for different graph structures can be obtained analogously. As an example of this, see the
sampling strategy derived for the t-HDP in Section S4.1 below which is suitable for any
polytree structure of dependence across layers.

S3.1 Marginal MCMC

In this section, both the underlying random probabilities and the cluster-specific parameters
are marginalized out. The sampling of the partitions is then performed based on the
exchangeable partition probability function (EPPF) of the first layer and the conditional
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partial exchangeable partition probability functions (pEPPF) of the subsequent layers. The
algorithms’ output is a posterior sample of the clustering configuration only. The marginal
MCMC’s core structure is in Algorithm 1. Algorithm 1 requires to sample from the full
conditional of the partition ρt, for t = 1, . . . , T . To derive the full conditional, we recall that
Xt are the observations at layer t, cti is the allocation variable for the ith subject referring
to the partition at layer t. We denote with ct the collection of all allocation variables
identifying the partition ρt, i.e., ct = (cti : i = 1, . . . , n) and with c−i

t the vector where the
ith entry as been removed, i.e., c−i

t = (ctj : j ∈ [n] \ {i}).

Algorithm 1 General model - Marginal algorithm core structure

Input: Data matrix (Xti, t = 1, . . . , T )ni=1

Output: posterior distribution of (ρt, t = 1, . . . , T )

Sample ρ1 from its full conditional proportional to

P(ρ1)P(X1 | ρ1)P(ρ2 | ρ1)

for t in 2:(T − 1) do
Sample ρt from its full conditional proportional to

P(ρt | ρt−1)P(Xt | ρt)P(ρt+1 | ρt)

Sample ρT from its full conditional proportional to

P(ρT | ρT−1)P(XT | ρT )

The full conditional of the partition at layer t is

P(ρt | ρ1, . . . , ρt−1, ρt+1, . . . , ρT ,X1, . . . ,XT ) ∝P(ρ1)
T∏

s=2

P(ρs | ρs−1)
T∏

s=1

P(Xs | ρs)

∝P(ρt | ρt−1)P(ρt | ρt+1)P(Xt | ρt)

Sampling ρt from its full conditional is typically unfeasible since it requires evaluating the
pEPPF, i.e., P(ρt | ρt−1), for all possible realizations of ρt. This problem is not specific of
telescopic clustering models. EPPFs and similar probability mass functions describing the
law of partitions have always a large support that increases with n accordingly to the Bell
number of n, and thus a posteriori is typically unfeasible to sample directly from them. The
sampling of the partition in probabilistic clustering models is usually done by sampling each
subject-specific allocation variable cti at a time, conditional on all the others. Following
this strategy for telescopic clustering, we have:

P(cti = m |Xt, c
−i
t , ρt−1, ρt+1) ∝ P(cti = m,Xit, ρt+1, |X−i

t , c−i
t , ρt−1)

=P(cti = m,Xit |X−i
t , c−i

t , ρt−1)P(ρt+1 | cti = m,Xt, c
−i
t , ρt−1)

=P(cti = m,Xit |X−i
t , c−i

t , ρt−1)P(ρt+1 | cti = m, c−i
t )

=
P(cti = m, c−i

t ,Xt | ρt−1)

P(c−i
t ,X−i

t | ρt−1)
P(ρt+1 | cti = m, c−i

t )

=
P(cti = m, c−i

t | ρt−1)

P(c−i
t | ρt−1)

P(Xt | cti = m, c−i
t )

P(X−i
t | c

−i
t )

P(ρt+1 | cti = m, c−i
t )
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This means that cti should be sampled accordingly to

p(cti = m | c−i
t , ct−1, ct+1, X

(t)) =

Pastimt(c
−i
t , ct−1)× Futimt(c

−i
t , ct+1)× Likimt(c

−i
t ,Xt)

where

Pastimt(c
−i
t , ct−1) =


P(cti=m,c−i

t )

P(c−i
t )

for t = 1

P(cti=m,c−i
t |ρt−1)

P(c−i
t |ρt−1)

for t = 2, . . . , T

Futimt =

{
P(ρt+1 | cti = m, c−i

t ) for t = 1, . . . , T − 1

1 for T = 1

and

Likimt =



∫
kt(x

(t)
i ,θ)

∏
j:cjt=m

j ̸=i

kt(x
(t)
j ,θ)dPθ(θ)∫ ∏

j:cjt=m
j ̸=i

kt(x
(t)
j ,θ)dPθ(θ)

if m ∈ c−i
t

∫
kt(x

(t)
i , θ)dPθ(θ) otherwise

Thus, the complexity and the mixing performance of this strategy largely depend on
two aspects. The first is how fast the cluster-specific marginal likelihood∫

Θt

∏
j:ctj=m

kt(xtj , θ)dPθ(θ)

can be computed. In this regard, the best scenario is when the kernel and the base mea-
sure are conjugate so that typically a closed-form expression for the marginal likelihood is
available.

The second important aspect is how fast the ratio Pastimt and the factor Futimt can
be computed. These both depend on the specific model chosen and may require the use
of auxiliary random variables to be computed. For instance, when we devise a marginal
algorithm for the t-HDP, Pastimt can be simplified by introducing the auxiliary variables
referring to the labels of the tables in the restaurant franchise metaphor (see, Teh et al.,
2006, for more details). Nonetheless, computing Futimt still requires evaluating the pEPPF
P(ρt+1 | ρt) for different configurations of ρt. This problem is specific to telescopic clustering
models and not encountered in classical Bayesian mixture models. When it comes to Futimt,
the introduction of latent variables to simplify this computation may not always be a
viable strategy. In the model of Page et al. (2022), which is a specific case of telescopic
clustering models, Futimt can be simplified to be an indicator function, thanks to some
binary latent variables. However, for instance, with the t-HDP, introducing the table labels
of the subsequent layer slows the mixing of the chain of parent nodes to unfeasible levels.

Whenever a specific telescopic clustering model is affected by this problem, there exist at
least two possible solutions: the first is to derive a block marginal Gibbs sampler, that does
not require the evaluation of Futimt and the second is to employ a conditional algorithm.
They are described in the next two sections. Note that the next two sections provide core
algorithms that are feasible only for a limited number of layers, nonetheless, the conditional
one can be easily adapted to any number of layers and any structure of the CPE dependence
as shown later in Section S4.2.
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S3.2 Block Marginal Gibbs sampling for two layers

When the number of layers is small, e.g., T = 2, a marginal sampling scheme can be devised
accordingly to Algorithm 2. Contrary to Algorithm 1, each allocation variable is sampled
by integrating out the allocation variables of descendant/future layers of the same subject,
resulting in a block structure where each subject is allocated to all layers conditional on
the other subjects’ allocation.

However, since the allocation variable at descendant layers is integrated out, each layer
is sampled from a distribution that depends also on observations at subsequent layers.
Such marginalization is only feasible for a limited number of layers since it increases the
computational time per iteration proportionally to the number of descendant layers.

Algorithm 2 General model - Block Marginal algorithm core structure

Input: Data matrix (X1i, X2i)
n
i=1

Output: smoothing posterior distribution of ρ1 and ρ2

for i in 1:n do
Sample c1i from p(c1i | c−i

1 , c−i
2 ,X1,X2), where

p(c1i = m | c−i
1 , c−i

2 ,X1,X2)

∝


Cm

p(ρ−i
1 ∩{c1i=m})
p(π−i

1 )

∫
k1(X1i,θ)

∏
j:c1j=m

k1(X1j ,θ)dPθ(θ)∫ ∏
j:c1j=m

k1(X1j ,θ)dPθ(θ)
if m ∈ c−i

1

Cm
p(ρ−i

1 ∩{c1i=m})
p(π−i

1 )

∫
k1(X1i, θ)dPθ(θ) otherwise

where Cm is the marginal likelihood of the second layer, i.e., for m ∈ c−i
1 ,

Cm =
∑
s

p(ρ−i
2 ∩ {c2i = s}) | ρ1)

p(ρ−i
2 | ρ1)

∫
k2(X2i, θ)

∏
j:c2j=s

k2(X2j , ξ)dPξ(ξ)∫ ∏
j:c2j=s

k2(X2j , ξ)dPξ(ξ)

Sample c2i from p(c2i | c1, c−i
2 ,X2), where

p(c2i = s |m, s−i,X2)

∝


p(ρ−1

2 ∩{c2i=s}|ρ1)
p(π−i

2 |ρ1)

∫
k2(X2i,θ)

∏
j:c2j=s

k2(X2j ,ξ)dPξ(ξ)∫ ∏
j:c2j=s

k2(X2j ,ξ)dPξ(ξ)
if s ∈ c−i

2

p(ρ−1
2 ∩{c2i=s}|ρ1)
p(π−i

2 |ρ1)

∫
k2(X2i, ξ)dPξ(ξ) otherwise

where:
∏
s∈∅

:= 1.

S3.3 Conditional MCMC sampler

Conditional algorithms are a convenient strategy when the full posterior of the random
probability is easier to sample compared to the evaluation of the partition’s probability
mass function. In fact, conditionally on the random probabilities, the full conditional of
the allocation variable cti largely simplifies since it does not depend on observations other
than Xti, for t varying.
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To derive the conditional sampler for a generic telescopic clustering model, denote with

• π(m, k, t) the weight associated to the kth component of p̃
(t)
m

• θ⋆(m, k, t) the atom associated to the kth component of p̃
(t)
m

Algorithm 3 General model - Conditional algorithm core structure

Input: Data matrix (Xti, t = 1, . . . , T )ni=1

Output: posterior distribution of ρ1 and ρ2

for i in 1:n do
Sample (cti)t from

p[(cti)
T
t=1 = (ct)

T
t=1)] ∝

T∏
t=1

[π(ct−1, ct, t)κt(Xti; θ
⋆(ct−1, ct, t))]

Sample π(m, k, t) and θ⋆(m, k, t) (full conditional does not depends on (Xs)s ̸=t)

Note that the algorithm above requires sampling the joint collection of allocation variables
for a single i across all layers. If the number of layers is large, this approach may not
always be optimal, as it amounts to sampling a discrete random variable—i.e., the joint
path (cti)

T
t=1—from a full conditional distribution with very large support. In Section S4.2,

we show how to modify this core structure to sample one layer at a time instead of the
entire path jointly.

S4 Sampling schemes for t-HDP

As already noticed in Section S3, the marginal sampling scheme as devised for a general
telescopic sampler as in Algorithm 1 is not a viable alternative for the t-HDP. In particular,
adopting the general marginal sampler, require to evaluate Futimt which is computationally
non-feasible, and cannot be solved with the introduction of the typical latent variables
employed with the HDP, because will results in a slow mixing, which decreases drastically
for layers with a high number of descendants.

In the following, we provide the equivalence of Algorithm 2 as specialized for the t-HDP
model and a variant of Algorithm 3. The latter is a fast conditional sampler, obtained
by combining block and partially collapsed Gibbs sampling steps, that can be employed
for any reasonable number of layers, we tested the performance to up to 100 layers. This
partially collapsed conditional block Gibbs sampler serves also to show how Algorithm 3
can be further refined to obtain a scalable algorithm even in the presence of an elevated
number of layers.

S4.1 Block Marginal Gibbs sampling for two layers

Referring to the Chinese restaurant metaphor used to describe the predictive law of the
hierarchical Dirichlet process as in Teh et al. (2006), denote with cti, the label of the table
at which the ith client is sat at layer t and with cti the dish eaten by the ith client at layer
t.
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We recall that all clients that sat at the same table eat the same dish and that the same
dish can be served at more than one table.

According to the metaphor, cti encodes the clustering structure of interest, while cti are
auxiliary latent parameters that are used to simplify the full conditional distribution from
which the cluster configuration has to be sampled in a Gibbs sampler.

Denote with

• C1 the set of tables’ labels at layer 1

• M1 the set of dishes’ labels at layer 1

• C2 the set of tables’ labels at layer 2

• M2 the set of dishes’ labels at layer 2

• C2|m the set of tables’ labels at layer 2 restricted to those clients that at layer 1 were
eating dish m

• n1c number of customer at layer 1 sat at table c

• n2,c|m number of customer sat at table c at layer 2 and eating dish m at layer 1

• q1m number of tables at layer 1 serving dish m

• q2m number of tables at layer 2 serving dish m

• dℓ(c) a function returning the label of the dish served at table c of layer ℓ

At layer 1, to sample c1i from p(c1i | c−i
1 ,X1,X2), we first sample the table allocation

variable c1i from

p(c1i = c |c−i
1 , c−i

1 ,X1,X2)

∝



Cd1(c) n
−i
1c

∫
k1(X1i,θ)

∏
j:c1j=c

k1(x
(1)
j ,θ)dPθ(θ)∫ ∏

j:c1j=c
k1(x

(1)
j ,θ)dPθ(θ)

if c ∈ C−i
1

α

( ∑
m∈M−i

1

Cm
q−i
1m

q∗−i
1 +α0

∫
k1(X1i,θ)

∏
j:c1j=m

k1(x
(1)
j ,θ)dPθ(θ)∫ ∏

j:c1j=m
k1(x

(1)
j ,θ)dPθ(θ)

+

C0
α0

q∗−i
1 +α0

∫
k1(X1i, θ)dPθ(θ)

)
otherwise

where

1.

Cm =
∑

s∈C−i
2|m

n−i
2,s|m

n⋆−i
1m + α

∫
k2(X2i, θ)

∏
j:c2j=s

k2(X2j , ξ)dPξ(ξ)∫ ∏
j:c2j=s

k2(X2j , ξ)dPξ(ξ)
+

+
α

(n⋆−i
1m + α)

∑
s∈M−i

2

q−i
2s

(q⋆−i
2 + α0)

∫
k2(X2i, θ)

∏
j:c2j=s

k2(X2j , ξ)dPξ(ξ)∫ ∏
j:c2j=s

k2(X2j , ξ)dPξ(ξ)
+

+
α

(n⋆−i
1m + α)

α0

(q⋆−i
2 + α0)

∫
k2(X2i, θ)dPξ(ξ)
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with
n⋆−i
1m =

∑
s∈C−i

2|m

n−i
2,s|m q⋆−i

2 =
∑

s∈M−i
2

q2s

note that n⋆−i
1m is the number of subjects assigned to dish m at layer 1 (excluding

subject i.

2.

C0 =
∑

s∈M−i
2

q−i
2s

(q⋆−i
2 + α0)

∫
k2(X2i, θ)

∏
j:c2j=s

k2(X2j , ξ)dPξ(ξ)∫ ∏
j:c2j=s

k2(X2j , ξ)dPξ(ξ)
+

+
α0

(q⋆−i
2 + α0)

∫
k2(X2i, θ)dPξ(ξ)

Then the dish allocation variable c1, is sampled from p(c1i |m−i, c, X(1),X2). Notice that
the full conditional is degenerate if at the previous step, the customer has sat at an already
occupied table, contrary, if c1i /∈ C−i

1 ,

p(c1i = m |m−i, c, X(1),X2)

∝


Cm q−i

1m

∫
k1(X1i,θ)

∏
j:c1j=m

k1(x
(1)
j ,θ)dPθ(θ)∫ ∏

j:c1j=m
k1(x

(1)
j ,θ)dPθ(θ)

if m ∈ c−i
1

C0 α0

∫
k1(X1i, θ)dPθ(θ) otherwise

The second layer is sampled following a classical marginal MCMC for the HDP (see Teh
et al., 2006), which can be obtained from the two full conditionals above setting Cm = 1
for all m and C0 = 1.

S4.2 Partially collapsed conditional block Gibbs sampler

Denote with

• π0(k, ℓ) the weight associated to the kth component of q̃
(ℓ)
0

• θ⋆0(k, ℓ) the atom associated to the kth component of q̃
(ℓ)
0

• π(m, k, ℓ) the weight associated to the kth component of p̃
(ℓ)
m

• c(ℓ, i) label of the table at layer ℓ of the ith customer

• k(ℓ, c) label of the dish served at layer ℓ at table c

• m(ℓ, i) label of the dish eaten at layer ℓ by the ith customer
(thus: m(0, i) = 1 for all i and m(ℓ, i) = k(ℓ, c(ℓ, i)))

The truncated stick breaking version of the t-HDP can be written as follows
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π0(·, ℓ) = [π0(1, ℓ), . . . , π0(H0, ℓ)]
iid∼ TSB(α0, H0) for ℓ = 1, . . . , L

π(m, ·, ℓ) = [π(m, 1, ℓ), . . . , π0(m,H, ℓ)]
iid∼ TSB(α,H) for m = 1, . . . ,H0

and ℓ = 1, . . . , L

θ⋆0(·, ℓ) = [θ⋆0(1, ℓ), . . . , θ
⋆
0(H0, ℓ)]

iid∼
H0×
h=1

P0 for ℓ = 1, . . . , L

k(ℓ, ·) = [k(ℓ, 1), . . . , k(ℓ,H0 ×H)] | π0(·, ℓ)
ind∼

H0×H

×
c=1

(
H0∑
h

π0(h, ℓ)δh

)
for ℓ = 1, . . . , L

c(ℓ, ·) = [c(ℓ, 1), . . . , c(ℓ, n)] | π(·, ·, ℓ),m(par(ℓ), ·)

ind∼
n

×
i=1

( H∑
h=1

π(m(par(ℓ), i), h, ℓ)δ[(m(par(ℓ),i)−1)H+h]

)
for ℓ = 1, . . . , L

m(ℓ, i) | k(ℓ, ·), c(ℓ, i) ind∼ δk(ℓ,c(ℓ,i)) for i = 1, . . . , n

and ℓ = 1, . . . , L

Xℓi | θ⋆0,m(ℓ, i)
ind∼ κℓ(·, θ⋆0(m(ℓ, i), ℓ)) for i = 1, . . . , n

and ℓ = 1, . . . , L

Denote also with

• Cℓ the set of unique values in c(ℓ, ·) (actually occupied tables)

• n(ℓ, c) number of customer at layer ℓ sat at table c

• q(ℓ, h) number of tables at layer ℓ serving dish h

• n̄(ℓ, h1, h2) = n(ℓ, (h1 − 1)×H + h2)

Figure S4.1 shows the corresponding graphical model when the number of layers equals
three and the dependence across layers is triangular as in Figure 3 in Section 3.3. Algo-
rithm 4 contains the pseudo-code of the conditional algorithm to estimate the t-HDP model
for any number of layers and any polytree structure. The algorithm is derived based on
the truncated stick-breaking version of the t-HDP, described above, and it is obtained by
combining block and partially collapsed Gibbs sampling steps. In particular, c(ℓ, i) and
m(ℓ, i) are sampled as a block from which {c(ℓ, i),with ℓ ∈ child(ℓ)} are marginalized out.
This drastically improves the mixing of the chain compared to a classical Gibbs sampler and
leads to the correct stationary distribution for the chain (cfr., Van Dyk and Park, 2008).
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π0(·,X) π(·, ·,X)

k(X, ·) c(X, ·)

π0(·,Y ) k(Y , ·) k(Z, ·) π0(·,Z)

π(·, ·,Y ) c(Y , ·) c(Z, ·) π(·, ·,Z)

m(X, ·)

m(Y , ·) m(Z, ·)

Y X Z

θ⋆0(·,Y ) θ⋆0(·,X) θ⋆0(·,Z)

Figure S4.1: Graphical model corresponding to a t-HDP with the truncated stick-breaking
representation with a triangular layer dependence.
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Algorithm 4 Conditional sampler - t-HDP

Input: Data matrix (X1i, X2i)
n
i=1

Output: smoothing posterior distribution of ρ1 and ρ2

for ℓ in 1:L do
for h1 in 1:H0 do

Sample b0(h1, ℓ) from Beta
(
1 + q(ℓ, h1), α0 +

∑H0
s=h1+1 q(ℓ, s)

)⋄
π0(h1, ℓ)← b0(h1, ℓ)

h1−1∏
s=1

b0(s, ℓ)
⋄

Sample θ⋆0(h1, ℓ) from p(θ) ∝
∏

i:m(ℓ,i)=h1

κℓ(Xℓi, θ)P0(dθ)
⋄

for h2 in 1:H do

Sample b(h1, h2, ℓ) from Beta
(
1 + n̄(ℓ, h1, h2), α0 +

∑H
s=h2+1 n̄(ℓ, h1, s)

)⋄
π(h1, h2, ℓ)← b(h1, h2, ℓ)

h2−1∏
s=1

b(h1, s, ℓ)
⋄

for ℓ in 1:L do
for i in 1:n do

m← m(ℓ− 1, i)
f ← m(ℓ+ 1, i)
Sample c(ℓ, i) from p(c) with c ∈ {(m− 1)H + 1, . . . ,mH}, where

p(c) ∝ π(m, c, ℓ) × κℓ(Xℓi ; θ
⋆
0(k(ℓ, c), ℓ)) ×

∏
ℓ⋆∈child(ℓ)

 ∑
d∈Mℓcf

π(k(ℓ, c), d, ℓ⋆)


whereMℓcf = {d : k(ℓ⋆, [k(ℓ, c)− 1]H + d) = f}

for c in 1 : (H ×H0) do
Sample k(ℓ, c) from p(k), with, for k ∈ {1, . . . H0},

p(k) ∝ π0(k, ℓ)
∏

i:c(ℓ,i)=c

κℓ(Xℓi ; θ
⋆
0(k, ℓ))

⋄

for i in 1:n do
m(ℓ, i)← k(ℓ, c(ℓ, i))

for h in 1:H0 do

q(ℓ, h)←
H×H0∑
c=1

1(k(ℓ, c) = h)1(c ∈ Cℓ)

for c in 1:H ×H0 do

n(ℓ, c)←
n∑

i=1
1(c(ℓ, i) = c)

⋄ we use the conventions:
∑H0

s=H0+1 q(ℓ, s) := 0,
0∏

s=1
b0(s, ℓ) := 1,

∏
i∈∅

xi = 1
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S5 Simulation studies

Num. of Num. of Num. of Num. of
Scenario items layers var. per layer clusters ARI Mispecified

n.A 200 2 1 2 1.000 No
n.B 200 2 1 2 0.010 No
n.1 200 10 1 2 0.809 No
n.2 200 100 1 2 0.921 No
n.C 200 2 2 3 0.914 Yes

Table S5.1: Simulation scenarios summaries: number of layers, layers’ dimension (i.e.,
number of variables per each layer), number of clusters at each layer, adjusted Rand index
between partitions at consecutive layers, whether the t-HDP estimated over the simulated
data has a mispecified kernel or not.

Scenario n.A and n.B

Simulating scenario description: In Scenario A and B, data for n = 200 observational
units and L = 2 layers are generated. Scenario A is obtained keeping the clustering structure
constant across the two layers. In particular, the first cluster is composed by 100 observa-

tions such that (X1i, X2i)
iid∼ N (0, 1)×N (4, 1), while the remaining 100 observations form

a second cluster and are sampled according to (X1i, X2i)
iid∼ N (4, 1)×N (0, 1). Figure S5.1a

shows the simulated data and highlights how the two clusters are well-separated both at
layer 1 (on the x-axis) and at layer 2 (on the y-axis). Differently, Scenario B is obtained
by imposing two highly different clustering structures at the two layers while keeping the
number of clusters and the clusters’ frequencies fixed across layers. This is achieved by re-
assigning half of the observations in each cluster to the other cluster while moving from one
layer to the next. Denoting with c1i and c2i the allocation variables at layer 1 and 2 respec-
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(a) Scenario 1: RI = 1, ARI = 1
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(b) Scenario 2: RI = 0.55, ARI = 0.01

Figure S5.1: Simulation study: simulated data and true cluster allocation for Scenarios A
and B. Each point corresponds to an item, colours denote clusters at layer 1 and shapes are
clusters at layer 2. Under scenario A, the clustering structure is the same at both layers,
and the adjusted Rand index between the two partitions is equal to 1. Under scenario B,
the clustering structure drastically changes between the two layers and the adjusted Rand
index (ARI) between the two partitions is approximately 0.
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(c) Telescopic HDP

Figure S5.2: Simulation study: results for Scenario A. Red circles denote observations
assigned to the wrong cluster at least for one layer.
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Figure S5.3: Simulation study: results for Scenario B. Red circles denote observations
assigned to the wrong cluster at least for one layer.

tively, the data generating process is: (X1i, X2i) | c1i = m, c2i = s
iid∼ N (θm, 1) ×N (ξs, 1),

where the locations at layer 1 are θ = (θ1, θ2) = (0, 4) and the locations at layer 2 are
ξ = (ξ1, ξ2) = (4, 0). In this scenario, the true clustering structure coincides with the ex-
pected value of a random assignment procedure, where, moving from layer 1 to layer 2, each
observation is reassigned to the other cluster with probability 1/2. Figure S5.1b shows the
simulated data. Note that the layer-marginal distributions are the same in both simula-
tion studies, what truly differentiates the two scenarios is how single items are reallocated
moving from layer 1 to layer 2.

Model: For both simulated datasets A and B, as baseline comparisons, we estimate the
clustering configuration independently at each layer as well as a constant clustering model,
which assumes the same configuration at both layers. We compare such approaches with
the results from the t-HDP model, based on CPE. The first two models are mixtures of the
hierarchical Dirichlet process as described in Camerlenghi et al. (2018). All three models
have univariate Normal kernel with mean µ and variance equal to 1. Prior distribution
for the mean is Normal centered in 0 and variance equal to 0.1. Concentration parameters
are fixed to 0.1. What differentiates the three models is the type of dependence between
layer-specific partitions, from independence to complete dependence to CPE.

Algorithm for t-HDP: 100 000 iterations of the block partially collapsed conditional
sampler in Algorithm 4 are performed and the first half is disregarded as burn-in. The
chain is initialized to the k-means solutions computed independently for each layer.
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Results: Figure S6.2 and S5.3 show the point estimates of the clustering allocations ob-
tained minimizing the variation of information loss (Meilă, 2007).

The constant clustering approach performs extremely well under scenario A, since the
prior distribution is degenerate on the truth of a unique clustering configuration (cf. Fig-
ure S5.2b). The same model performs badly in the second simulation scenario since the
true clustering configuration does not belong to the support of the prior (cf. Figure S5.3b).

On the other hand, the independent model performs worse than the constant model in
simulation scenario A, since it does not allow for any borrowing of information and modeling
of within-subject dependence/ subjects’ identity (cf. Figure S6.2a). In simulation scenario
B, the independent model has an advantage with respect to both the constant clustering
and CPE, because under the truth there is no within-subject dependence and borrowing of
information between clustering configurations is undesirable. Nonetheless, in this second
scenario, the independent approach lead to seven allocation errors (four at layer 1 and three
at layer 2), which can be explained by the fact that they correspond to observations that
are more likely to be generated under the other mixture component (cf. Figure S5.3a).

The results of the telescopic clustering model coincide with the best performance in
both scenarios. In fact, the model achieves the same results as the constant model when
the clustering configuration is indeed constant (Scenario A) and the same results as the
independent model when the clustering configurations are the expectation of a random
assignment (Scenario B). The telescopic clustering appears able to detect the dependence
structure between layers and accurately recover the clustering configuration of the obser-
vations.

Scenario n.1

Simulating scenario description: In Scenario 1, we generate data on n = 200 items
and T = 10 layers. At each layer, marginally we assume two clusters simulated from two
univariate Normal distributions with unitary variance and centred in 0 and 4 respectively.
From one layer to the next, 10 items (5% of the total) are selected at random and moved
to the other cluster, so that the adjusted Rand index from one layer t to the next t + 1
equals 0.809. Simulated data are shown in Figure S5.4. See also Section 7.1.

Model: t-HDP model with univariate Normal kernel with mean µ and variance σ2. Prior
distribution for the mean is Normal centered in 0 and variance equal to σ2/0.1. Concentra-
tion parameters are fixed to 0.1. The prior for the precision 1/σ2 is a Gamma distribution
with shape and rate parameters equal to 0.1. We compare the results of t-HDP with three
competitors We compare four methods: (i) k-means fitted independently at each layer,
where the number of clusters is determined by the gap statistics (Tibshirani et al., 2001);
(ii) the estimate obtained with a logit stick-breaking process (LSBP) (Ren et al., 2011);
and (iii) the estimate from an Enriched Dirichlet process (E-DP) (Wade et al., 2011).

Algorithm for t-HDP: 100 000 iterations of the block partially collapsed conditional
sampler in Algorithm 4 are performed and the first half is disregarded as burn-in. The
chain is initialized to the k-means solutions computed independently for each layer.

Results: The t-HDP model identifies the true clustering configuration at all layers with
at most three out of 200 wrongly allocated subjects and a rand index between the truth
and the estimate always higher than 0.97, the average rand index equals 0.99 and the av-
erage number of wrongly allocated subject per layer is 1.1 out 200. It outperforms the
competitors both consistently at each layer and overall.
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Figure S5.4: Simulation study: simulated data for Scenario 1. Plots refer to the observations
in layers 1, 3, 5, 7, and 9. Colours and shapes denote the true clustering at layer 1. The
diagonal plots show the marginal distribution at each layer, colour coded according to the
clustering allocation at layer 1. Upper off-diagonal plots display the joint distribution of
two pairs of layers, colour coded according to the clustering allocation at layer 1. Lower
off-diagonal plots show the scatter plot of the data at the corresponding layers, colour coded
according to the clustering allocation at layer 1. The adjusted Rand index between two
consecutive configurations is 0.809.
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Figure S5.5: Simulation study: results
for Scenario 1. Posterior distributions
of Rand indexes between the posterior
configurations and the truth for t-HDP
model for layers 1, 5, 10.

Independent k-means and the LSBP perform
well, even if they do not include within-subject
dependence. This is to be expected in this sce-
nario since the true clusters are well-separated
(cf., with results of Scenario 4 below, where the
k-means solution is often unable to identify the
true number of clusters, even though the cluster
have still Gaussian shapes). Nevertheless, both
the k-means solution and the LSBP estimates
are always dominated by the t-HDP estimates.

Finally, the enriched Dirichlet process is the
worst-performing model, as a direct consequence
of the degeneracy issue of the model discussed in
Section 2. Recall that under the enriched Dirich-
let process, once two items are assigned to two
different clusters at layer t, they cannot be as-
signed to the same cluster at any subsequent
layer s, for s > t.

Figure S5.5 shows the posterior distribution
of the Rand index between the true clustering
configuration and the configurations visited by
the posterior algorithm of the t-HDP model for
layers 1, 5, and 10 after burn-in. The posterior
is concentrated around 1, which corresponds to

the truth, exhibiting small uncertainty around the estimated clustering configuration. See
also Section 7.1.
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Scenario n.2

Simulating scenario description: Data for 100 layers are simulated. At each layer there
are two clusters and data are univariate. In particular, at layer 1 half of the dataset forms
the first cluster, i.e., c1i = 1 for i = 1, . . . , 50, and the other half the second cluster, i.e.
c1i = 2 for i = 51, . . . , 100. At layer 1, values are sampled from

X1i | c1i
ind∼ N (0, 1)1(c1i = 1) +N (3, 1)1(c1i = 2)

Then, from layer ℓ to layer ℓ+1, 2% of the observations are selected at random and moved
to the cluster they were not assigned to.

Model: t-HDP model with univariate Normal kernel with mean µ and variance σ2. The
prior distribution for the mean is Normal centred in 0 and variance equal to σ2/0.1. The
prior for the precision 1/σ2 is a Gamma distribution with shape and rate parameters equal
to 0.1. The concentration parameters of the t-HDP have prior Gamma with rate and shape
parameters equal to 3. Compare with independent k-mean at each layer.

Algorithm: 70 000 iterations of the block partially collapsed conditional sampler in Al-
gorithm 4 are performed and the first 20 000 are disregarded as burn-in. The chain is
initialized to the k-means solutions computed independently for each layer.

Results: see Section 7.1.

Scenario C
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Figure S5.6: Simulation study: simulated data for Scenario C. Colours and shapes denote
the true clustering at layer 1. The diagonal plots show the marginal distribution of each
variable at each layer, colour coded according to the clustering allocation at layer 1. Upper
and lower off-diagonal plots display the joint distribution of two pairs of variables, colour
coded according to the clustering allocation at layer 1.

Simulating scenario description: Data for two layers are simulated. At each layer,
there are three clusters and data are bi-variate. In particular, at layer 1 approximately
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one-third of the dataset forms the first cluster, i.e., c1i = 1 for i = 1, . . . , 66, approximately
one-third forms the second cluster, i.e. c1i = 2 for i = 67, . . . , 132 and the remaining
observations form a third cluster. At layer 1, bivariate values are sampled from bivariate
student t distributions

X1i | c1i
ind∼ T2(µ1, 1,Σ1)1(c1i = 1) + T2(µ2, 1,Σ2)1(c1i = 2) + T2(µ3, 1,Σ3)1(c1i = 3)

where T2(µ, ν,Σ) denotes a bivariate t-Student distribution with ν degrees of freedom,
centered in µ and with scale matrix given by Σ.
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Figure S5.7: Scenario C: posterior distribu-
tions of Rand indexes between the posterior
and the truth for t-HDP model. Red dashed
vertical lines denote the Rand indexes corre-
sponding to the k-means’ solution.

Then, from layer 1 to layer 2, 5% of the
observations in the first two clusters are se-
lected at random and moved to the cluster
they were not assigned to, while the third
cluster is kept constant. Bivariate values
for the second layer are sampled from

X2i | c2i
ind∼ T2(µ1, 1,Σ1)1(c2i = 1)

+ T2(µ2, 1,Σ2)1(c2i = 2)

+ T2(µ3, 1,Σ3)1(c2i = 3)

The true clusters’ means are µ1 = (0, 0)T ,
µ2 = (4, 4)T , and µ3 = (8, 8)T .

Model: t-HDP model with univariate Nor-
mal kernel with mean µ and diagonal
variance and covariance matrix Σ2. The
prior distribution for the mean and vari-
ance and covariance matrix is a Normal-
Inverse-Chi-Squared-distribution, in partic-
ular, for j = 1, 2, µj are a priori inde-
pendent and Normal distributed with mean
0 and variance σ2

j /0.1, while σ2
j are inde-

pendently distributed accordingly to an in-
verse Chi-Squared with 1 degrees of free-
dom. The concentration parameters of the

t-HDP have prior Gamma with rate and shape parameters equal to 3.

Algorithm: 100 000 iterations of the block partially collapsed conditional sampler in Al-
gorithm 4 are performed and the first half is disregarded as burn-in. The chain is initialized
to the k-means solutions computed independently for each layer for 10 clusters.

Results: The Rand index between the true configuration and the point estimates derived
minimizing the variation of information loss function (Meilă, 2007; Wade and Ghahramani,
2018) are 0.97 and 0.96 for layer 1 and layer 2 respectively. The same values obtained
with two independent k-means algorithms where the number of clusters is chosen based
on the gap statistics (Tibshirani et al., 2001), are respectively 0.97 and 0.33. Figure S5.7
shows the distribution of the Rand index between the true clustering configuration and the
configurations visited by the posterior algorithm of the t-HDP model after burn-in.
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S6 Sensitivity to first-layer prior in t-HDP

In this section, we compare the results obtained using the t-HDP, as described in Section 4,
with a variant of the model in which the first layer marginally follows a Dirichlet process
mixture model, while the specification of subsequent layers remains unchanged. That is,
the variant of the model is given by

X1i | p̃1
iid∼
∫
Θ1

k1(X1i, θ)p̃1(dθ), p̃1 | γ ∼ DP (γ, Pθ),

whereas the second-layer conditional law is

X2i | c1, (p̃21, p̃22, . . .)
ind∼
∫

f(X2i, θ)p̃2ci(dθ),

p̃2m | α, q̃0
iid∼ DP (α, q̃0), q̃0 | α0 ∼ DP (α0, Pξ),

where DP (α, P ) denotes a Dirichlet process with concentration parameter α and base
distribution P .
The comparison is derived for the simulation studies A, B, and 1 as described in the
previous section and summarized in Table S5.1. The kernel, base measures, and priors on
the concentration parameters remain unchanged between the two specifications and are as
described in the previous section for each simulation study. The number of iterations and
the burn-in period are also as specified in the previous section.
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Figure S6.1: Simulation study: results for Scenario A. Red circles denote observations
assigned to the wrong cluster at least for one layer. The absence of red circles denotes
perfect recovery.
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Figure S6.2: Simulation study: results for Scenario b. Red circles denote observations
assigned to the wrong cluster at least for one layer.

Scenario n.1

Rand Index # Mistakes
Layer k-means t-HDP LSBP E-DP DP-t-HDP k-means t-HDP LSBP E-DP DP-t-HDP

n.1 0.98 0.98 0.98 0.50 0.98 2 2 2 100 2
n.2 0.98 1.00 0.98 0.90 1.00 2 0 2 10 0
n.3 0.92 0.98 0.92 1.00 0.98 8 2 8 0 2
n.4 0.98 1.00 0.98 0.92 1.00 2 0 2 17 0
n.5 0.92 0.97 0.91 0.89 0.97 8 3 9 21 3
n.6 0.97 0.98 0.97 0.86 1.00 3 2 3 31 0
n.7 0.94 0.99 0.92 0.83 0.99 6 1 8 40 1
n.8 0.95 1.00 0.95 0.79 1.00 5 0 5 44 0
n.9 0.93 1.00 0.93 0.79 1.00 7 0 7 47 0
n.10 0.91 0.99 0.89 0.75 0.99 9 1 11 54 1

average 0.95 0.99 0.83 0.82 0.99 5.2 1.1 5.7 36.4 0.9

Table S5.1: Scenario 1, Rand indexes between the estimated and true clustering configu-
rations and numbers of items allocated to the wrong cluster. The variant under study is
denoted with DP-t-HDP
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S7 Application to metabolic concentrations in obese chil-
dren: additional details and results

OverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweight

ThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinness

Severe thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinness

ObesityObesityObesityObesityObesityObesityObesityObesityObesityObesity

26 %26 %26 %26 %26 %26 %26 %26 %26 %26 %

−4

−2

0

2

4

6

4 6 8
Years

Z
−

B
M

I

OverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweight

ThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinness

Severe thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinness

ObesityObesityObesityObesityObesityObesityObesityObesityObesityObesity

28 %28 %28 %28 %28 %28 %28 %28 %28 %28 %

−4

−2

0

2

4

6

4 6 8
Years

Z
−

B
M

I

OverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweight

ThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinness

Severe thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinness

ObesityObesityObesityObesityObesityObesityObesityObesityObesityObesity

22 %22 %22 %22 %22 %22 %22 %22 %22 %22 %

−4

−2

0

2

4

6

4 6 8
Years

Z
−

B
M

I

OverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweight

ThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinness

Severe thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinness

ObesityObesityObesityObesityObesityObesityObesityObesityObesityObesity

14 %14 %14 %14 %14 %14 %14 %14 %14 %14 %

−4

−2

0

2

4

6

4 6 8
Years

Z
−

B
M

I

OverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweightOverweight

ThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinnessThinness

Severe thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinnessSevere thinness

ObesityObesityObesityObesityObesityObesityObesityObesityObesityObesity

10 %10 %10 %10 %10 %10 %10 %10 %10 %10 %

−4

−2

0

2

4

6

4 6 8
Years

Z
−

B
M

I

Figure S7.1: Average growth trajectories in the five estimated clusters at the z-BMI layer,
shaded area includes 95% of the observations assigned to the cluster, bands in the back-
ground correspond to WHO classification of growth trajectories into Obesity, Overweight,
Normal, Thinness, and Severe thinness. Percentages correspond to the proportions of chil-
dren assigned to each of the five clusters.
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Figure S7.2: Boxplots by cluster assignment of the variables ogtt and ppBMI correspond-
ing to the mother layer. Percentages correspond to the proportions of mothers assigned to
each of the three clusters.
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Figure S7.3: Scatter plots, density estimates and correlation values of z-BMI scores by
cluster assignment at years 4, 5, 6, 7, and 9. Colours denote the cluster assignment of the
children at the growth trajectory layer. The diagonal plots show the marginal distribution
of the z-BMIs at each time point, colour coded according to the clustering allocation. Upper
off-diagonal plots display the correlation between any two pairs of time points, overall and
by cluster. Lower off-diagonal plots show the scatter plot of the data, colour coded according
to the clustering allocation.
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Figure S7.4: Scatter plots, density estimates and correlation values of the ogtt and ppBMI
variables. Colours denote the cluster assignment at the mother layer. The diagonal plots
show the marginal distribution of ogtt and ppBMI. Upper off-diagonal plots display the
correlation between the two variables overall and by cluster. Lower off-diagonal plots show
the scatter plot of the data.
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Figure S7.5: Scatter plots, density estimates and correlation values of seven randomly se-
lected metabolites. Colors denote the cluster assignment at the metabolites layer. The
diagonal plots show the marginal distributions. Upper off-diagonal plots display the corre-
lation overall and by cluster. Lower off-diagonal plots show the scatter plot of the data.

... ...

S-24



Growth trajectory
Mother Metabolites Normal Normal Total

Underweight low Normal high Obesity

Low Conf. 1 45 107 112 68 26 64.74%
Conf. 2 1 11 5 3 12 5.79%

High Conf. 1 8 20 39 42 21 23.51%
Conf. 2 0 2 1 7 17 4.88%

Outliers Conf. 1 0 2 0 2 1 0.90%
Conf. 2 0 0 0 0 1 0.18%

Total 9.76% 25.68% 28.39% 22.06% 14.10%

Table S7.1: Three-way cross-table of the estimated clustering configurations. Values within
the table are absolute frequencies; the last row indicates the percentages of children in dif-
ferent growth trajectory clusters; the last column contains percentages of children assigned
to different combinations of mother and metabolites clusters.

Average IQR Kruskal-Wallis
Metabolite cluster 1 cluster 2 cluster 1 cluster 2 p-value

Clinical LDL Cholesterol 2.8918 3.4800 0.8383 1.3361 0.0000
HDL Cholesterol 1.6027 1.5545 0.3234 0.4035 0.0366
Triglycerides 0.7663 1.2641 0.3232 0.7728 0.0000

Phosphoglycerides 2.2372 2.5376 0.4324 0.7174 0.0000
Cholines Phosphoglycerides 2.5614 2.8604 0.4464 0.6645 0.0000

Sphingomyelins 0.5001 0.5468 0.0936 0.1424 0.0014
APO A1 1.4819 1.4974 0.2747 0.3638 0.7219
APO B 0.8092 0.9997 0.2181 0.3844 0.0000
Omega 3 0.4182 0.4702 0.1377 0.1862 0.0077
Omega 6 4.2964 4.7016 0.5689 0.8934 0.0000

Poly-Unsaturated FA (PUFA) 42.7171 40.2715 2.5448 3.4999 0.0000
Mono-Unsaturated FA (MUFA) 23.2455 24.8581 1.8430 2.8237 0.0000

Saturated FA (SFA) 34.0375 34.8704 1.0974 1.5096 0.0000
Linoleic acid 30.7019 29.3047 2.7123 4.0315 0.0001

Docosahexaenoic acid (DHA) 2.1145 1.9018 0.5387 0.4947 0.0005
Alanine 0.3079 0.3502 0.0901 0.1114 0.0000

Glutamine 0.5775 0.5375 0.1343 0.1423 0.0026
Glycine 0.2310 0.2091 0.0436 0.0412 0.0000
Histidine 0.0877 0.0878 0.0128 0.0136 0.8621
Isoleucine 0.0512 0.0650 0.0126 0.0126 0.0000
Leucine 0.1020 0.1230 0.0203 0.0254 0.0000
Valine 0.2311 0.2722 0.0422 0.0395 0.0000

Phenylalanine 0.0553 0.0594 0.0114 0.0140 0.0032
Tyrosine 0.0686 0.0802 0.0139 0.0224 0.0000
Glucose 4.8412 4.9235 0.5471 0.4521 0.0219
Lactate 2.0602 2.5197 0.7823 0.8316 0.0000
Pyruvate 0.0952 0.1108 0.0314 0.0461 0.0001
Citrate 0.1059 0.1034 0.0176 0.0198 0.1641

beta-Hydroxybutyric acid 0.1237 0.2036 0.1257 0.1227 0.4402
Acetate 0.0357 0.0294 0.0156 0.0101 0.0000

Acetoacetate 0.0434 0.0709 0.0406 0.0468 0.5898
Acetone 0.0183 0.0258 0.009 0.0091 0.2576

Creatinine 45.3778 47.9555 9.1402 12.7015 0.0318
Albumin 42.5924 43.4704 3.7106 4.6384 0.3151

Glycoprotein acetyls 0.8306 0.9525 0.1344 0.2099 0.0000

Table S7.2: Summary of metabolite clusters: average concentration of each metabolite by
cluster, interquartile range (IQR) of the metabolites concentration distribution by cluster
and p-value of the Kruskal-Wallis test for difference in distribution between the two clusters.
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S8 Computational cost and mixing performance of posterior
algorithms

Simulation study n.1: n=200, P=2, L=2

ESS / N ESS / N time for 1 time for 1000
layer n.1 layer n.2 iteration effective draws

0.03830 0.02410 0.0132 sec 9.12 min

Simulation study n.2: n=200, P=2, L=2

ESS / N ESS / N time for 1 time for 1000
layer n.1 layer n.2 iteration effective draws

0.05762 0.04580 0.0134 sec 4.88 min

Simulation study n.3: n=200, P=10, L=10

ESS / N ESS / N ESS / N time for 1 time for 1000
layer n.1 layer n.5 layer n.10 iteration effective draws

0.09904 0.05823 0.03056 0.072 sec 39.26 min

Simulation study n.4: n=200, P=100, L=100

ESS / N ESS / N ESS / N time for 1 time for 1000
layer n.1 layer n.50 layer n.100 iteration effective draws

0.0254 0.02035 0.0872 1.028 sec 841 min

Table S8.1: Effective sample size per iteration (ESS/N) after burn-in for the Rand index
between chain and truth, time in seconds per iteration, and time in minutes for 1000 effective
draws. The latter is computed as the maximum of the value (time)×1000/(ESS/N) across
layers. n denotes the sample size, P is the total number of considered variables, and L is
the total number of layers to which the variables are assigned. Algorithms are coded in R

and run on Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz CPU.

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
85

0.
90

0.
95

1.
00

MCMC iterations

ri

Rand Index layer 1 − Trace plot 
 Conditional algorithm

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
80

0.
85

0.
90

0.
95

1.
00

MCMC iterations

ri

Rand Index layer 2 − Trace plot 
 Conditional algorithm

Figure S8.1: Simulation study: Scenario n.1. Trace plots of the Rand index between the
chain configuration and the true configuration. Vertical dashed lines locate the burn-in
period.
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Figure S8.2: Simulation study: Scenario n.2. Trace plots of the Rand index between the
chain configuration and the true configuration. Vertical dashed lines locate the burn-in
period.
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Rodŕıguez, A., D. B. Dunson, and A. E. Gelfand (2008). The nested Dirichlet process (with
discussion). Journal of the American Statistical Association 103 (483), 1131–1154.

Teh, Y., M. Jordan, M. Beal, and D. Blei (2006). Hierarchical Dirichlet processes. Journal
of the American Statistical Association 101 (476), 1566–1581.

Tibshirani, R., G. Walther, and T. Hastie (2001). Estimating the number of clusters in a
data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 63 (2), 411–423.

Van Dyk, D. A. and T. Park (2008). Partially collapsed gibbs samplers: Theory and
methods. Journal of the American Statistical Association 103 (482), 790–796.

Wade, S. and Z. Ghahramani (2018). Bayesian cluster analysis: point estimation and
credible balls (with discussion). Bayesian Analysis 13 (2), 559–626.

Wade, S., S. Mongelluzzo, and S. Petrone (2011). An enriched conjugate prior for Bayesian
nonparametric inference. Bayesian Analysis 6 (3), 359–385.

S-28


	Preliminaries on exchangeable partitions and partial exchangeability
	Finite exchangeability of telescopic clustering
	Sampling schemes for generic telescopic clustering models
	Marginal MCMC
	Block Marginal Gibbs sampling for two layers
	Conditional MCMC sampler

	Sampling schemes for t-HDP
	Block Marginal Gibbs sampling for two layers
	Partially collapsed conditional block Gibbs sampler

	Simulation studies
	Sensitivity to first-layer prior in t-HDP
	Application to metabolic concentrations in obese children: additional details and results

