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Abstract Bayesian models for data grouped into distinct samples are typically de-
fined within the framework of partial exchangeability. All currently known non-
parametrics priors for partially exchangeable data induce positive correlation both
between observations coming from different samples as well as between the under-
lying random probability measures. However, such property is not implied by partial
exchangeability and may not be appropriate in some applications. Using σ -stable
completely random measures and Clayton-Lévy copulas, we propose a nonpara-
metric prior that may induce either negative or positive correlation. The contents of
these pages summarize some of the results derived in [1].
Abstract La parziale scambiabilità è un’assunzione spesso utilizzata nei modelli
Bayesiani per dati suddivisi in campioni. Tutte le distribuzioni non parametriche
note per dati parzialmente scambiabili inducono correlazione positiva sia tra le os-
servazioni in diversi campioni, sia tra le misure di probailità sottostanti. Tuttavia,
la correlazione positiva non è implicata dalla parziale scambiabilità. In questo la-
voro viene introdotta una distribuzione a priori nonparametrica che può indurre
correlazione negativa o positiva e che fa uso delle misure completamente aleato-
rie σ -stabili e delle Clayton-Lévy copulas. Il contenuto di queste pagine riassume
alcuni dei risultati derivati in [1].
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1 Introduction

Traditional Bayesian models assume that data are exchangeable, which is a homo-
geneity condition implying the existence of a common underlying distribution from
which observations have been sampled. More formally, a sequence of observations
X = (Xi)i≥1 is said exchangeable if and only if ∀n ≥ 1, (X1, . . . ,Xn) is equal in
distribution to (Xσ(1), . . . ,Xσ(n)) for any σ permutation of n elements. It should be
clear that exchangeability is an appropriate assumption only when one would like
to develop an inferential procedure which disregards any information that may be
included in the order in which data were collected and stored.

However, this is not the case, for instance, when data are grouped into many sam-
ples corresponding to different experimental conditions or when discrete covariates
information is available. In these situations a more plausible assumption is partial
exchangeability. Two sequences of data X1 = (Xi,1)i≥1 and X2 = (Xi,2)i≥1, where
X j,i is a random variable taking value in a Polish space (X,X ), are said partially
exchangeable if and only if for all n1 ≥ 1 and n2 ≥ 1:

(X1,1, . . . ,Xn1,1,X1,2, . . . ,Xn2,2)
d
= (Xσ1(1),1, . . . ,Xσ1(n1),1,Xσ2(1),2, . . . ,Xσ2(n2),2)

for any σ1 and σ2 permutations of respectively n1 and n2 elements. Thanks to de
Finetti’s representation theorem for partial exchangeability [3], we know that X1
and X2 are partial exchangeable if and only if there exist two (possibly dependent)
random probability measure p̃1 and p̃2 such that:

Xi, j | (p̃1, p̃2)
ind∼ p̃ j for j = 1,2 (p̃1, p̃2)∼ Q

and Q plays the role of the prior.
In the last two decades there has been a growing interest in developing nonpara-

metric priors for partially exchangeable data. See [5, 11] and references therein.
However, all existing and used nonparametric priors induce a non-negative cor-

relation both between p̃1(A) and p̃2(A), for every A∈X , and between Xi,1 and Xi′,2
for any i, i′. Such property is not implied by partial exchangeability and does not fit
those applications where one has a priori information regarding negative correlation
between obsevarbles in different groups.

In this work, after some preliminaries regarding completely random measures
(Section 2), we introduce a novel nonparametric prior (Section 3) over (p̃1, p̃2) that
may induce either negative or positive correlation between the observables. Lastly
(Section 4), we develop an algorithm for sampling from the proposed prior and use it
to show the conditional behaviour of p̃2 given p̃1. The focus of this work is the prior
law of (p̃1, p̃2). For what concerns posterior inference, a comment can be found at
the end of Section 3, while further details will be provided in forthcoming works.
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2 Preliminaries on completely random measures

Consider a Polish space (X,X ) endowed with its Borel σ -algebra and (MX,MX)
the space of boundedly finite measures on X.

Definition 1. Given a probability space (Ω ,F ,P), a random element µ̃ from (Ω ,F ,P)
into (MX,MX) is a completely random measure (CRM) on (X,X ) if, for every col-
lection of pairwise disjoint sets (Ai)

n
i≥1 in X , the random variables µ̃(A1), µ̃(A2), . . . ,µ̃(An)

are mutually independent.

If µ̃ is a CRM without deterministic component and fixed points of discontinuity,
then µ̃ is almost surely discrete, i.e.

µ̃
a.s.
=

∞

∑
j=1

J jδX j

and µ̃ is characterized by the following Laplace functional transform. For any mea-
surable positive-valued function f ,

E
[

e
−
∫
X

f (x)µ̃(dx)
]
= exp

−
∫

R+×X

[1− e−s f (x)]ṽ(ds,dx)


where ṽ is called Lévy intensity and uniquely identifies the law of µ̃ . Finally, we
assume that the jumps (J j) j≥1 and the locations (X j) j≥1 are independent, so that
v(ds,dx) = ρ(s)dsα(dx). For more details on CRM, we refer to [8, 9]. CRMs have
been proven a useful tool for prior specification. In particular, they may be normal-
ized to obtain random probability measures, called normalized random measures
with independent increments (NRMI), introduced in [12]. The notion of CRM can
be extended to a vector of measures as follows:

Definition 2. Let µ = (µ̃1, µ̃2) be a vector of CRMs on X. We say that µ is a com-
pletely random vector (CRV) on (X,X ) if, for every collection of pairwise disjoint
sets (Ai)

n
i≥1 in X , the random vectors (µ̃1(A1), µ̃2(A1)), . . . ,(µ̃1(An), µ̃2(An)) are

mutually independent.

The Laplace functional transform of µ is

E
[

e
−
∫
X

f1(x)µ̃1(dx)−
∫
X

f2(x)µ̃2(dx)
]
= exp

−
∫

(R+)2×X

(1− e−s1 f1(x)−s2 f2(x))v(ds1,ds2,dx)


for measurable f1, f2 : X→ R+, where v is called joint Lévy intensity and uniquely
identifies the law of (µ̃1, µ̃2).
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3 Atom-dependent σ -stable normalized completely random
measures

Definition 3. Let ξ = (ξ1,ξ2) be a CRV on (X×X,X ⊗X ) with Lévy intensity
v(ds1,ds2,dx1,dx2) = ρ(s1, s2)ds1ds2 α(dx1,dx2) such that

+∞∫
0

ρ(s1, s)ds1 =

+∞∫
0

ρ(s, s2)ds2 =
σ

Γ (1−σ)
s−1−σ ds, 0 < σ < 1.

Then µ̃1(·) = ξ1(·×X) and µ̃2(·) = ξ2(X×·) are called atom-dependent σ -stable
CRMs with underlying joint Levy intensity v.

Proposition 1. Consider µ̃1 and µ̃2 atom-dependent σ -stable CRMs, as defined in
Definition 3, then µ̃ j is a σ -stable CRM, for j = 1,2 and the a.s. discrete represen-
tation of µ̃1 and µ̃2 is:

µ̃1
a.s.
= ∑

k≥1
W1,kδ(θ1,k) µ̃2

a.s.
= ∑

k≥1
W2,kδ(θ2,k)

where the two sequences of weights (W1,k)k≥1 and (W2,k)k≥1 are inherited from the

underlying measures ξ1 and ξ2 and (θ1,k,θ2,k)
iid∼ G0 ≡ α/α(X).

Definition 4. The random probability measures p̃1 and p̃2 obtained normalizing two
atom-dependent σ -stable CRMs µ̃1 and µ̃2 with underlying joint Levy intensity v:

p̃1(·) =
µ̃1(·)
µ̃1(X)

p̃2(·) =
µ̃2(·)
µ̃2(X)

are called atom-dependent σ -stable NRMIs.

In order to obtain a working model which makes use of atom-dependent σ -stable
NRMIs, the underlying joint Lévy intensity v has to be specified. A useful stategy
to serve the purpose is to use Lévy copulas. See [2, 7, 10]. A popular Lévy copula
is the Clayton’s one, which is given by the following expression:

Cθ (x1,x2) = {x−θ

1 + x−θ

2 }
−1/θ

The attractive feature of Clayton’s copula is that it depends only on one parameter,
θ , that fully characterizes the degree of dependence between the resulting CRMs ξ1
and ξ2. As consequence, when Clayton’s copula is used to specify the law of two
atom-dependent NRMIs, θ controls the portion of dependence between p̃1 and p̃2
induced by the joint distribution of the weights. In particular when θ → 0 indepen-
dence between p̃1 and p̃2 is approached, while the case of θ → +∞ corresponds
to maximal dependence induced by the weights, i.e. the two sequences of weights
are equal with probability 1. Applying Clayton’s Lévy copula to marginal Lévy σ -
stables, one gets (see [4]):
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v(ds1,ds2,dx1,dx2;θ) =
(1+θ)σ (s1 s2)

σθ−1

Γ (1−σ)(sσθ
1 + sσθ

2 )
1
θ
+2

α(dx1,dx2) (1)

Theorem 1. Consider the sampling model Xi, j | p̃ j
ind∼ p̃ j for j = 1,2 and i =

1, . . . ,n j, where p̃1 and p̃2 are atom-dependent σ -stable NRMIs with underlying
joint Lévy intensity (1), then:

Corr(Xi,1,Xi′,2) = g(θ)ρ

where g : R+→ (0,(1−σ)) and ρ is the correlation between two random variables
jointly sampled from G0.

Therefore, for appropriate choices of G0, and in particular of ρ , the correlation be-
tween observations in different samples can be negative.

Lastly, concerning the possibility of deriving posterior inference, it is important
to note that the representation of (µ̃1, µ̃2) in terms of the CRV (ξ1,ξ2) is crucial.
Indeed, it allows to obtain posterior representation theorems generalizing the results
provided in [6] for the exchangeable case.

4 Prior algorithm and simulations

We conclude this work with a simulation study, which shows the flexibility of the
nonparamteric prior introduced in the previous section when α(dx1,dx2) is a mul-
tivariate Gaussian probability measure with zero means, unit variances and correla-
tion ρ . To this end we need an algortihm to sample the infinite dimensional param-
eters p̃1 and p̃2 for different values of the hyperparameters θ and ρ . Algorithm 1
serves the purpose and it has been obtained adapting the Algorithm 6.15 in [2] to
the atom-dependent structure. We first sample a realization for p̃1 and then sim-

Algorithm 1: Prior Sampler
for k← 0 to K do

Sample Tk from an Exponential(1);

Compute S(1)k = S(1)k−1 +Tk;
Sample Uk from an Uniform(0, 1);

Compute S(2)k = S(1)k

(
U−θ/(1+θ)

k −1
)−1/θ

;

Compute Wj,k = (S( j)
k σ Γ (1−σ))−1/σ for j = 1,2;

Sample (θ1,k,θ2,k) from G0;
end
Compute W̄j,k =Wj,k/∑

K
k=1 Wj,k for j = 1,2 and k = 1, . . . ,K;

Obtain p̃1 ≈ ∑
K
k=1 W̄1,kδθ1,k and p̃2 ≈ ∑

K
k=1 W̄2,kδθ2,k

ulate the conditional distribution of p̃2, given p̃1, under different hyperparameters
choices. Figure 1 shows the results in terms of cumulative distribution functions.
The plots in the first and second row (ρ = −1 and ρ = −0.5) show a strong and
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mild negative correlation between the observables, represented by the opposite be-
haviour of p̃2 and p̃1. While p̃1 associates high probabilities to positive values, p̃2
tends to associate high probabilities to negative values. While ρ increases, first the
conditional distribution of p̃2 becomes independent from p̃1 (ρ = 0) and then shows
a behaviour similar to that of p̃1 (ρ = 0.5 and ρ = 1), corresponding to positive
correlation of the observables.

Fig. 1 Green solid line: a realization of the cumulative distribution function (cdf) corresponding to
p̃1, i.e.

∫ x
−∞

p̃1(dx). Blue dashed lines: conditional expected value of the cdf corresponding to p̃2,
given the realization of p̃1, i.e. E

[∫ x
−∞

p̃2(dx) | p̃1
]
. Light blue shaded area: 95% pointwise credible

interval for the cdf corresponding to p̃2. Pink shaded area: 99% pointwise credible interval for the
cdf corresponding to p̃2.
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using Lévy copulas. J. Multivar. Anal. 97, 1551–1572 (2006)
8. Kingman, J.F.: Completely random measures. Pac. J. Math. 21, 59–78 (1967)
9. Kingman, J.F.: Poisson Processes. Oxford Studies in Probability. Oxford University Press,

Oxford (1993)
10. Palacio, A. R., Leisen, F.: Bayesian nonparametric estimation of survival functions with

multiple-samples information. Electron. J. Stat., 12, 1330–1357 (2018)
11. Quintana, F. A., Mueller, P., Jara, A., MacEachern, S. N.: The dependent Dirichlet process

and related models. arXiv preprint arXiv:2007.06129. (2020)
12. Regazzini, E., Lijoi, A., Prünster, I.: Distributional results for means of normalized random

measures with independent increments. Ann. Stat. 31, 560–585 (2003)


